Abstract
THE self-renewal and differentiation of haematopoietic stem cells occurs in vivo and in vitro in direct contact with cells making up the haematopoietic microenvironment1–4. In this study we used adhesive ligands and blocking antibodies to identify stromal cell-derived extracellular matrix proteins involved in promoting attachment of murine haematopoietic stem cells. Here we report that day-12 colony-forming-unit spleen (CFU-S12)5 cells and reconstituting haematopoietic stem cells attach to the C-terminal, heparin-binding fragment of fibronectin by recognizing the CS-1 peptide of the alternatively spliced non-type III connecting segment (IIICS) of human plasma fibronectin. Furthermore, CFU-S12 stem cells express the α4 subunit of the VLA-4 integrin receptor, which is known to be a receptor for the CS-1 sequence, and monoclonal antibodies against the integrin α4 subunit of VLA-4 block adhesion of CFU-S12 stem cells to plates coated with the C-terminal fibronectin fragment. Finally, polyclonal antibodies against the integrin β1 subunit of VLA-4 inhibit the formation of CFU-S12-derived spleen colonies and medullary haematopoiesis in vivo following intravenous infusion of antibody-treated bone marrow cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Dexter, T. M., Allen, T. D. & Lajtha, L. G. J. cell. Physiol. 91, 335–344 (1977).
Trentin, J. J., Curry, J. C., Wilf, N. & Cheng, V. in The Proliferation and Spread of Neoplastic Cells M.D. Anderson Hospital 21st Annual Symposium on Fundamental Cancer Research 713 (Williams and Wilkins, Baltimore, 1967).
Spooncer, E., Heyworth, C. M., Dunn, A. & Dexter, D. M. Differentiation 31, 111–117 (1986).
Zipori, D. in Hematopoiesis: Long-term Effects on Chemotherapy and Radiation (eds Testa, N. F. & Gale, R. P.) 27–62 (Dekker, New York, 1988).
Till, J. E. & McCulloch, E. A. Radial Res. 14, 213–222 (1961).
Gordon, M. Y., Riley, G. P., Watt, S. M. & Greaves, M. F. Nature 326, 403–405 (1987).
Roberts, R. et al. Nature 332, 376–378 (1988).
Gordon, M. Y. & Greaves, M. F. Bone Marrow Transplant. 4, 335–338 (1989).
Williams, D. A., Rosenblatt, M. F., Beier, D. R. & Cone, R. D. Molec. cell. Biol. 8, 3864–3871 (1988).
Rios, M. & Williams, D. A. J. cell. Physiol. 145, 434–443 (1990).
Zuckerman, K. S. & Wicha, M. S. Blood 61, 540–547 (1983).
Humphries, M. J., Akiyama, S. K., Kormoriya, A., Olden, K. & Yamada, K. M. J. Cell Biol. 103, 2637–2647 (1986).
McCarthy, J. B., Hagen, S. T. & Furcht, L. T. J. Cell Biol. 102, 179–188 (1986).
Bernardi, P., Patel, V. P. & Lodish, H. F. J. Cell Biol. 105, 489–498 (1987).
Jordan, C. T. & Lemischka, I. R. Genes Dev. 4, 220–232 (1990).
McCarthy, J. B. et al. J. Cell Biol. 110, 777–787 (1990).
Humphries, M. J., Komoriya, A., Akiyama, S. K., Olden, K. & Yamada, K. M. J. biol. Chem. 262, 6886–6892 (1987).
Wayner, E. A., Garcia-Pardo, A., Humphries, M. J., McDonald, J. A. & Carter, W. G. J. Cell Biol. 109, 1321–1330 (1989).
Guan, J.-L. & Hynes, R. O. Cell 60, 53–61 (1990).
Schwarzbauer, J. E., Lemischka, I. R. & Hynes, R. O. Cell 35, 421–431 (1983).
Hemler, M. E. A. Rev. Immun. 8, 365–400 (1990).
Holzmann, B. & Weissman, I. L. EMBO. 8, 1735–1741 (1989).
Ho, M.-K. & Springer, T. A. J. Immun. 128, 2281–2286 (1982).
Kennett, R. et al. Monoclonal Antibodies (Plenum, New York, 1980).
Lord, B. I., Testa, A. G. & Hendry, J. H. Blood 46, 65–72 (1975).
Lambertsen, R. H. & Weiss, L. A. Blood 63, 287–297 (1984).
Eaves, A. C., Cashman, J. D., Gaboury, L. A., Kalousk, D. K. & Eaves, C. J. Proc. natn. Acad. Sci. U.S.A. 83, 5306–5310 (1986).
Aizawa, S. & Tavassoli, M. Proc. natn. Acad. Sci. U.S.A 85, 3180–3183 (1988).
Anderson, D. M. et al. Cell 63, 235–243 (1990).
Martin, F. H. et al. Cell 63, 203–211 (1990).
Zsebo, K. M. et al. Cell 63, 213–224 (1990).
Rogelj, S. et al. J. Cell Biol. 109, 823–831 (1989).
Patel, V. P. & Losich, H. F. J. Cell Biol. 102, 449–456 (1986).
Lamar, E. E. & Palmer, E. Cell 37, 171–177 (1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Williams, D., Rios, M., Stephens, C. et al. Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 352, 438–441 (1991). https://doi.org/10.1038/352438a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/352438a0
This article is cited by
-
High levels of endothelial ICAM-1 prohibit natalizumab mediated abrogation of CD4+ T cell arrest on the inflamed BBB under flow in vitro
Journal of Neuroinflammation (2023)
-
Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia
Leukemia (2020)
-
Menatetrenone facilitates hematopoietic cell generation in a manner that is dependent on human bone marrow mesenchymal stromal/stem cells
International Journal of Hematology (2020)
-
Bone marrow niche-mimetics modulate HSPC function via integrin signaling
Scientific Reports (2017)
-
Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis
Nature Communications (2016)