Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autoreactivity by design: innate B and T lymphocytes

Key Points

  • Innate lymphocytes are a subset of T and B lymphocytes that express a restricted set of semi-invariant, germ-line-encoded, autoreactive antigen receptors.

  • Some innate B-cell and T-cell receptors are genetically favoured during the neonatal period, whereas others are constantly generated over lifetime.

  • Innate lymphocytes consist of 10–50% of the total lymphocyte count and include most B-1 B cells, γδ T cells and CD1d-restricted natural killer T (NKT) cells and a fraction of marginal zone B cells.

  • Innate lymphocytes express an activated effector phenotype in the absence of exogenous immunization and their autoreactivity is controlled by SHP-1 (Src-homology-2-domain-containing protein tyrosine phosphatase 1)-associated inhibitory receptors, such as NK receptors and CD5.

  • Innate lymphocytes represent an evolutionary strategy of immune recognition, which is distinct from adaptive lymphocytes and similar to NK cells, and target conserved self-antigens associated with tissue damage and the various forms of cell stress, injury and death.

  • Innate lymphocytes regulate various autoimmune, infectious and tumour conditions.

  • Innate lymphocytes acquire their peculiar differentiation and tissue-homing properties during development, as a consequence of the high avidity of their germ-line-encoded antigen receptor for self-antigen.

Abstract

Innate B and T lymphocytes are a subset of lymphocytes that express a restricted set of semi-invariant, germ-line-encoded, autoreactive antigen receptors. Although they have long been set apart from mainstream immunological thought, they now seem to represent a distinct immune-recognition strategy that targets conserved stress-induced self-structures, rather than variable foreign antigens. Innate lymphocytes regulate a range of infectious, tumour and autoimmune conditions. New studies have shed light on the principles and mechanisms that drive their unique development and function, and show their resemblance to another subset of innate lymphocytes, the natural killer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Balancing autoreactive antigen receptors with inhibitory receptors.
Figure 2: Specificity for self-antigen governs differentiation and tissue location of innate lymphocytes.
Figure 3: Borderline avidity to self-antigen drives lineage differentiation.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C. A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Benlagha, K. & Bendelac, A. CD1d-restricted mouse Vα14 and human Vα24 T cells: lymphocytes of innate immunity. Semin. Immunol. 12, 537–542 (2000).

    CAS  PubMed  Google Scholar 

  3. Hayakawa, K. et al. Positive selection of natural autoreactive B cells. Science 285, 113–116 (1999).The first demonstration that self-antigen drives the selection of innate lymphocytes.

    CAS  PubMed  Google Scholar 

  4. Briles, D. E. et al. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J. Exp. Med. 153, 694–705 (1981).The first demonstration that innate lymphocytes confer natural protection against infection.

    CAS  PubMed  Google Scholar 

  5. Shaw, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin, F. & Kearney, J. F. B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a 'natural immune memory'. Immunol. Rev. 175, 70–79 (2000).

    CAS  PubMed  Google Scholar 

  7. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    CAS  PubMed  Google Scholar 

  8. Smiley, S. T., Kaplan, M. H. & Grusby, M. J. Immunoglobulin E production in the absence of interleukin-4 secreting CD1-dependent cells. Science 275, 977–979 (1997).

    CAS  PubMed  Google Scholar 

  9. Park, S. H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).The intriguing demonstration that most of the mouse CD1d-restricted T-cell receptor repertoire is innate rather than adaptive.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiu, Y. H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    CAS  PubMed  Google Scholar 

  13. Spada, F. M. et al. Self-recognition of CD1 by γ/δ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    CAS  PubMed  Google Scholar 

  15. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    CAS  PubMed  Google Scholar 

  16. Mercolino, T. J., Arnold, L. W., Hawkins, L. A. & Haughton, G. Normal mouse peritoneum contains a large population of Ly-1+ (CD5) B cells that recognize phosphatidylcholine. Relationship to cells that secrete hemolytic antibody specific for autologous erythrocytes. J. Exp. Med. 168, 687–698 (1988).

    CAS  PubMed  Google Scholar 

  17. Hardy, R. R., Carmack, C. E., Shinton, S. A., Riblet, R. J. & Hayakawa, K. A single VH gene is utilized predominantly in anti-BrMRBC hybridomas derived from purified Ly-1 B cells. Definition of the VH11 family. J. Immunol. 142, 3643–3651 (1989).

    CAS  PubMed  Google Scholar 

  18. Constant, P. et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).

    CAS  PubMed  Google Scholar 

  19. Fournie, J. J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol. 147, 338–347 (1996).

    CAS  PubMed  Google Scholar 

  20. Allison, T. J., Winter, C. C., Fournie, J. J., Bonneville, M. & Garboczi, D. N. Structure of a human γδ TCR. Nature 411, 820–824 (2001).

    CAS  PubMed  Google Scholar 

  21. Lang, F. et al. Early activation of human Vγ9Vδ2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. J. Immunol. 154, 5986–5994 (1995).

    CAS  PubMed  Google Scholar 

  22. Morita, C. T. et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3, 495–507 (1995).

    CAS  PubMed  Google Scholar 

  23. Havran, W. L. A role for epithelial γδ T cells in tissue repair. Immunol. Res. 21, 63–69 (2000).

    CAS  PubMed  Google Scholar 

  24. Havran, W. L., Chien, Y. H. & Allison, J. P. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

    CAS  PubMed  Google Scholar 

  25. Mukasa, A., Lahn, M., Pflum, E. K., Born, W. & O' Brien, R. L. Evidence that the same γδ T cells respond during infection-induced and autoimmune inflammation. J. Immunol. 159, 5787–5794 (1997).

    CAS  PubMed  Google Scholar 

  26. Allison, J. P. & Havran, W. L. The immunobiology of T cells with invariant γδ antigen receptors. Annu. Rev. Immunol. 9, 679–705 (1991).

    CAS  PubMed  Google Scholar 

  27. Mallick-Wood, C. A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

    CAS  PubMed  Google Scholar 

  28. Watanabe, N. et al. Migration and differentiation of autoreactive B-1 cells induced by activated γ/δ T cells in antierythrocyte immunoglobulin transgenic mice. J. Exp. Med. 192, 1577–1586 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas, W., Pereira, P. & Tonegawa, S. γ/δ cells. Annu. Rev. Immunol. 11, 637–685 (1993).

    CAS  PubMed  Google Scholar 

  30. Hayday, A. C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).An up-to-date authoritative review on γδ T cells.

    CAS  PubMed  Google Scholar 

  31. Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).A demonstration of the crosstalk between tissues and their resident lymphocytes.

    CAS  PubMed  Google Scholar 

  32. Azuara, V., Levraud, J. P., Lembezat, M. P. & Pereira, P. A novel subset of adult γδ thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur. J. Immunol. 27, 544–553 (1997).

    CAS  PubMed  Google Scholar 

  33. Brown, M. G., Scalzo, A. A., Matsumoto, K. & Yokoyama, W. M. The natural killer gene complex: a genetic basis for understanding natural killer cell function and innate immunity. Immunol. Rev. 155, 53–65 (1997).

    CAS  PubMed  Google Scholar 

  34. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    CAS  Google Scholar 

  35. Halary, F. et al. Control of self-reactive cytotoxic T lymphocytes expressing γδ T cell receptors by natural killer inhibitory receptors. Eur. J. Immunol. 27, 2812–2821 (1997).A demonstration that inhibitory receptors control autoreactive T-cell receptors.

    CAS  PubMed  Google Scholar 

  36. Ikarashi, Y. et al. Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition. Critical role for b7 in CD1d-dependent NKT cell interferon γ production. J. Exp. Med. 194, 1179–1186 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Exley, M., Porcelli, S., Furman, M., Garcia, J. & Balk, S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24JαQ T cell receptor α chains. J. Exp. Med. 188, 867–876 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schuhmachers, G. et al. 2B4, a new member of the immunoglobulin gene superfamily, is expressed on murine dendritic epidermal T cells and plays a functional role in their killing of skin tumors. J. Invest. Dermatol. 105, 592–596 (1995).

    CAS  PubMed  Google Scholar 

  39. Girardi, M. et al. Regulation of cutaneous maligancy by γδ T cells. Science 294, 605–609 (2001).

    CAS  PubMed  Google Scholar 

  40. Bikah, G., Carey, J., Ciallella, J. R., Tarakhovsky, A. & Bondada, S. CD5-mediated negative regulation of antigen receptor-induced growth signals in B-1 B cells. Science 274, 1906–1909 (1996).

    CAS  PubMed  Google Scholar 

  41. Sen, G., Bikah, G., Venkataraman, C. & Bondada, S. Negative regulation of antigen receptor-mediated signaling by constitutive association of CD5 with the SHP-1 protein tyrosine phosphatase in B-1 B cells. Eur. J. Immunol. 29, 3319–3328 (1999).

    CAS  PubMed  Google Scholar 

  42. Reap, E. A., Sobel, E. S., Cohen, P. L. & Eisenberg, R. A. Conventional B cells, not B-1 cells, are responsible for producing autoantibodies in lpr mice. J. Exp. Med. 177, 69–78 (1993).

    CAS  PubMed  Google Scholar 

  43. Wither, J. E., Roy, V. & Brennan, L. A. Activated B cells express increased levels of costimulatory molecules in young autoimmune NZB and (NZB × NZW)F1 mice. Clin. Immunol. 94, 51–63 (2000).

    CAS  PubMed  Google Scholar 

  44. Paciorkowski, N., Porte, P., Shultz, L. D. & Rajan, T. V. B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J. Exp. Med. 191, 731–736 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosen, A. & Casciola-Rosen, L. Clearing the way to mechanisms of autoimmunity. Nature Med. 7, 664–665 (2001).

    CAS  PubMed  Google Scholar 

  46. Forster, I. & Rajewsky, K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn miceM. Eur. J. Immunol. 17, 521–528 (1987).

    CAS  PubMed  Google Scholar 

  47. Ochsenbein, A. F. et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science 286, 2156–2159 (1999).

    CAS  PubMed  Google Scholar 

  48. Weiser, M. R. et al. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J. Exp. Med. 183, 2343–2348 (1996).

    CAS  PubMed  Google Scholar 

  49. King, D. P. et al. Cutting edge: protective response to pulmonary injury requires γδ T lymphocytes. J. Immunol. 162, 5033–5036 (1999).

    CAS  PubMed  Google Scholar 

  50. D'Souza, C. D. et al. An anti-inflammatory role for γδ T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J. Immunol. 158, 1217–1221 (1997).

    CAS  PubMed  Google Scholar 

  51. Gombert, J. M. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26, 2989–2998 (1996).

    CAS  PubMed  Google Scholar 

  52. Wilson, S. B. et al. Extreme TH1 bias of invariant Vα24JαQ T cells in type I diabetes. Nature 391, 177–181 (1998).

    CAS  PubMed  Google Scholar 

  53. Shi, F. D. et al. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl Acad. Sci. USA 98, 6777–6782 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hammond, K. J. L. et al. α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med 191, 661–668 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunol. 1, 515–520 (2000).

    CAS  Google Scholar 

  58. Dieli, F. et al. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction. J. Exp. Med. 192, 1645–1652 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carnaud, C. et al. Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  60. Kitamura, H. et al. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189, 1121–1128 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Park, S. H. & Bendelac, A. CD1-restricted T-cell responses and microbial infection. Nature 406, 788–792 (2000).

    CAS  PubMed  Google Scholar 

  62. Havran, W. L. & Allison, J. P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. The role of short homology repeats and TdT in generation of the invariant γδ antigen receptor repertoire in the fetal thymus. Immunity 3, 439–447 (1995).Genetic dissection of the making of a canonical T-cell receptor.

    CAS  PubMed  Google Scholar 

  64. Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 72, 337–348 (1993).

    CAS  PubMed  Google Scholar 

  65. Benedict, C. L. & Kearney, J. F. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 10, 607–617 (1999).Genetic dissection of the making of a canonical B-cell receptor.

    CAS  PubMed  Google Scholar 

  66. Lantz, O. & Bendelac, A. An invariant T cell receptor α chain is used by a unique subset of MHC class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    CAS  PubMed  Google Scholar 

  67. Shimamura, M., Ohteki, T., Beutner, U. & MacDonald, H. R. Lack of directed Vα14-Jα281 rearrangements in NK1+ T cells. Eur. J. Immunol. 27, 1576–1579 (1997).

    CAS  PubMed  Google Scholar 

  68. McVay, L. D. & Carding, S. R. Extrathymic origin of human γδ T cells during fetal development. J. Immunol. 157, 2873–2882 (1996).

    CAS  PubMed  Google Scholar 

  69. Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171, 1597–1612 (1990).

    CAS  PubMed  Google Scholar 

  70. Davodeau, F. et al. Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol. 23, 804–808 (1993).

    CAS  PubMed  Google Scholar 

  71. Tatu, C., Ye, J., Arnold, L. W. & Clarke, S. H. Selection at multiple checkpoints focuses V(H)12 B cell differentiation toward a single B-1 cell specificity. J. Exp. Med. 190, 903–914 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lam, K. P. & Rajewsky, K. B cell antigen receptor specificity and surface density together determine B-1 versus B-2 cell development. J. Exp. Med. 190, 471–477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chumley, M. J. et al. A VH11Vκ9 B cell antigen receptor drives generation of CD5+ B cells both in vivo and in vitro. J. Immunol. 164, 4586–4593 (2000).

    CAS  PubMed  Google Scholar 

  74. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD 19, and btk. Immunity 12, 39–49 (2000).A demonstration that specificity and avidity for self-antigen control the differentiation of innate lymphocytes.

    CAS  PubMed  Google Scholar 

  75. Gerber, D. J. et al. IL-4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol. 163, 3076–3082 (1999).

    CAS  PubMed  Google Scholar 

  76. Bendelac, A., Hunziker, R. D. & Lantz, O. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184, 1285–1293 (1996).

    CAS  PubMed  Google Scholar 

  77. Skold, M., Faizunnessa, N. N., Wang, C. R. & Cardell, S. CD1d-specific NK1.1+ T cells with a transgenic variant TCR. J. Immunol. 165, 168–174 (2000).

    CAS  PubMed  Google Scholar 

  78. Bonneville, M. et al. Transgenic mice demonstrate that epithelial homing of γ/δ T cells is determined by cell lineages independent of T cell receptor specificity. J. Exp. Med. 171, 1015–1026 (1990).

    CAS  PubMed  Google Scholar 

  79. Watanabe, N. et al. Expression levels of B cell surface immunoglobulin regulate efficiency of allelic exclusion and size of autoreactive B-1 cell compartment. J. Exp. Med. 190, 461–469 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kouskoff, V., Lacaud, G., Pape, K., Retter, M. & Nemazee, D. B cell receptor expression level determines the fate of developing B lymphocytes: receptor editing versus selection. Proc. Natl Acad. Sci. USA 97, 7435–7439 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kenny, J. J. et al. Autoreactive B cells escape clonal deletion by expressing multiple antigen receptors. J. Immunol. 164, 4111–4119 (2000).

    CAS  PubMed  Google Scholar 

  82. Bendelac, A., Killeen, N., Littman, D. & Schwartz, R. H. A subset of CD4+ thymocytes selected by MHC class I molecules. Science 263, 1774–1778 (1994).

    CAS  PubMed  Google Scholar 

  83. Kennedy, M. K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Cyster, J. G. & Goodnow, C. C. Protein tyrosine phosphatase 1C negatively regulates antigen receptor signaling in B lymphocytes and determines thresholds for negative selection. Immunity 2, 13–24 (1995).

    CAS  PubMed  Google Scholar 

  85. Hayakawa, K. & Hardy, R. R. Development and function of B-1 cells. Curr. Opin. Immunol. 12, 346–353 (2000).

    CAS  PubMed  Google Scholar 

  86. Murakami, M. et al. Effects of breeding environments on generation and activation of autoreactive B-1 cells in anti-red blood cell autoantibody transgenic mice. J. Exp. Med. 185, 791–794 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Legendre, V. et al. Selection of phenotypically distinct NK1.1+ T cells upon antigen expression in the thymus or in the liver. Eur. J. Immunol. 29, 2330–2343 (1999).

    CAS  PubMed  Google Scholar 

  88. Schultz, R. J., Parkes, A., Mizoguchi, E., Bhan, A. K. & Koyasu, S. Development of CD4CD8 αβTCR+ NK1.1+ T lymphocytes. Thymic selection by self antigen. J. Immunol. 157, 4379–4389 (1996).

    Google Scholar 

  89. Galili, U. Evolution and pathophysiology of the human natural anti-α-galactosyl IgG (anti-Gal) antibody. Springer Semin. Immunopathol. 15, 155–171 (1993).

    CAS  PubMed  Google Scholar 

  90. Liu, Y. J., Oldfield, S. & MacLennan, I. C. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18, 355–362 (1988).

    CAS  PubMed  Google Scholar 

  91. MacLennan, I. C. & Gray, D. Antigen-driven selection of virgin and memory B cells. Immunol. Rev. 91, 61–85 (1986).

    CAS  PubMed  Google Scholar 

  92. Litman, G. W. et al. Immunoglobulin VH gene structure and diversity in Heterodontus, a phylogenetically primitive shark. Proc. Natl Acad. Sci. USA 82, 2082–2086 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Matzinger, P. Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).A general model of immunity based on the assumption that sensing tissue stress and damage governs the decision between immunological tolerance versus responsiveness.

    CAS  PubMed  Google Scholar 

  94. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med. 5, 1249–1255 (1999).A demonstration that necrotic, but not apoptotic, cell death activates the immune system.

    CAS  PubMed  Google Scholar 

  95. Singh, N. et al. Cutting edge: activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a TH2 phenotype. J. Immunol. 163, 2373–2377 (1999).

    CAS  PubMed  Google Scholar 

  96. Kakimi, K., Guidotti, L. G., Koezuka, Y. & Chisari, F. V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192, 921–930 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzalez-Aseguinolaza, G. et al. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA 97, 8461–8466 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Toura, I. et al. Cutting edge: inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J. Immunol. 163, 2387–2391 (1999).

    CAS  PubMed  Google Scholar 

  99. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med. 7, 1052–1056 (2001).

    CAS  PubMed  Google Scholar 

  100. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nature Med. 7, 1057–1062 (2001).

    CAS  PubMed  Google Scholar 

  101. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

apolipoprotein E

CD1c

CD1d

CD5

CD19

CD21

CD22

CD94

IFN-γ

IL-4

IL-15

KGF

MICA

MICB

motheaten

SHP-1

T10

terminal deoxytransferase

Thy-1

OMIM

IDDM

FURTHER INFORMATION

Albert Bendelac's lab

John Kearney's lab

Glossary

IDIOTYPE

A unique feature of an immunoglobulin molecule that is recognized by an anti-idiotypic antibody. In the case of T15, the idiotype is constituted by the canonical sequence of the antigen-binding site.

COMPLEMENTARITY-DETERMINING REGION

(CDR). The most variable parts of immunoglobulin and the T-cell receptor, which forms loops that make contact with specific ligands. There are three such regions (CDR1, CDR2 and CDR3) in each V domain.

N-DIVERSIFICATION

Untemplated nucleotide additions introducing new amino acids at V-D-J junctions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendelac, A., Bonneville, M. & Kearney, J. Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1, 177–186 (2001). https://doi.org/10.1038/35105052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35105052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing