Abstract
Many pathological processes, including those causing allergies and autoimmune diseases, are associated with the presence of specialized subsets of T helper cells (TH1 and TH2) at the site of inflammation1,2,3,4. The diversity of TH1 and TH2 function is not predetermined but depends on signals that drive the cells towards either subset1,2,3,4. Histamine, released from effector cells (mast cells and basophils) during inflammatory reactions can influence immune response5,6,7,8. Here we report that histamine enhances TH1-type responses by triggering the histamine receptor type 1 (H1R), whereas both TH1- and TH2-type responses are negatively regulated by H2R through the activation of different biochemical intracellular signals. In mice, deletion of H1R results in suppression of interferon (IFN)-γ and dominant secretion of TH2 cytokines (interleukin (IL)-4 and IL-13). Mutant mice lacking H2R showed upregulation of both TH1 and TH2 cytokines. Relevant to T-cell cytokine profiles, mice lacking H1R displayed increased specific antibody response with increased immunoglobulin-ε (IgE) and IgG1, IgG2b and IgG3 compared with mice lacking H2R. These findings account for an important regulatory mechanism in the control of inflammatory functions through effector-cell-derived histamine.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).
Chen, Q. et al. Development of Th1-type immune responses requires the type 1 cytokine receptor TCCR. Nature 407, 916–920 (2000).
Sallusto, F., Mackay, C. R. & Lanzavecchia, A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007 (1997).
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clones. 1. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).
Roszkowski, W., Plaut, M. & Lichtenstein, L. M. Selective display of histamine receptors on lymphocytes. Science 195, 683–685 (1977).
Beer, D. J. & Rocklin, R. E. Histamine modulation of lymphocyte biology: Membrane receptors, signal transduction, and functions. Crit. Rev. Immunol. 7, 55–91 (1987).
Vannier, E. & Dinarello, C. Histamine enhances interleukin (IL)-1-induced IL-1 gene expression and protein synthesis via H2 receptors in peripheral blood mononuclear cells. Comparison with IL-1 receptor antagonist. J. Clin. Invest. 92, 281–287 (1993).
Banu, Y. & Watanabe, T. Augmentation of antigen receptor-mediated responses by histamine H1 receptor signaling. J. Exp. Med. 189, 673–682 (1999).
Yamashita, M. et al. Expression cloning of a cDNA encoding the bovine histamine H1 receptor. Proc. Natl Acad. Sci. USA 88, 11515–11519 (1991).
Gantz, I. et al. Molecular basis for the interaction of histamine with the histamine H2 receptor. J. Biol. Chem. 267, 20840–20843 (1992).
Leurs, R., Smit, M. J. & Timmerman, H. Molecular pharmacological aspects of histamine receptors. Pharmacol. Ther. 66, 413–463 (1995).
Boss, V., Talpade, D. J. & Murphy, T. J. Induction of NFAT-mediated transcription by Gq-coupled receptors in lymphoid and non-lymphoid cells. J. Biol. Chem. 271, 10429–10432 (1996).
Plaut, M., Marone, G. & Gillespie, E. The role of cyclic AMP in modulating cytotoxic T lymphocytes. II. Sequential changes during culture in responsiveness of cytotoxic lymphocytes to cyclic AMP-active agents. J. Immunol. 131, 2945–2952 (1983).
Novak, T. J. & Rothenberg, E. V. cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells. Proc. Natl Acad. Sci. USA 87, 9353–9357 (1990).
Bodor, J., Spetz, A., Strominger, J. L. & Habener, J. F. cAMP inducibility of transcriptional repressor ICER in developing and mature T lymphocytes. Proc. Natl Acad. Sci. USA 93, 3536–3541 (1996).
Del Prete, G. F., De Carli, M. & Mastromauro, C. Purified protein derivate of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profiles of cytokine production. J. Clin. Invest. 88, 344–350 (1991).
Robinson, D. S. et al. Predominant Th2-like bronchoalveolar T lymphocyte population in atopic asthma. N. Engl. J. Med. 326, 298–304 (1992).
Akdis, C. A., Joss, A., Akdis, M., Faith, A. & Blaser, K. A molecular basis for T cell suppression by IL-10: CD28-associated IL-10 receptor inhibits CD28 tyrosine phosphorylation and phosphatidylinositol 3-kinase binding. FASEB J. 14, 1666–1668 (2000).
Inoue, I. et al. Impaired locomotor activity and exploratory behaviour in mice lacking histamine H1 receptors. Proc. Natl Acad. Sci. USA 93, 13316–13320 (1996).
Kobayashi, T. et al. Abnormal function and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J. Clin. Invest. 105, 1741–1749 (2000).
Mobarakeh, I. J. et al. Role of histamine H(1) receptor in pain perception: a study of the receptor gene knockout mice. Eur. J. Pharmacol. 391, 81–89 (2000).
Corry, D. B. & Kheradmand, F. Induction and regulation of the IgE response. Nature 402, B18–B23 (1999).
Akdis, C. A. & Blaser, K. IL-10 induced peripheral T cell anergy and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. FASEB J. 13, 603–609 (1999).
Jutel, M. et al. Influence of bee venom immunotherapy on degranulation and leukotriene generation in human blood basophils. Clin. Exp. Allergy 26, 1112–1118 (1996).
Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).
Akdis, C. A., Blesken, T., Akdis, M., Wuthrich, B. & Blaser, K. The role of IL-10 in specific immunotherapy. J. Clin. Invest. 102, 98–106 (1998).
Jutel, M. et al. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-γ secretion in specific allergen-stimulated T-cell cultures. J. Immunol. 154, 4187–4194 (1995).
Faith, A., Akdis, C. A., Akdis, M., Simon, H. U. & Blaser, K. Defective TCR stimulation in anergized Th2 cells correlates with abrogated p56lck and ZAP70 tyrozine kinase activities. J. Immunol. 159, 53–60 (1997).
Watanabe, N., Katakura, K., Kobayashi, A., Okumura, K. & Ovary, Z. Protective immunity and eosinoiphilia in IgE-deficient SJA/9 mice infected with Nippostrongylus brasiliensis and Trishinella spiralis. Proc. Natl Acad. Sci. USA 85, 4460–4462 (1988).
Acknowledgements
We thank R. M. Zinkernagel, F. Melchers and J. E. DeVries for critically reviewing the manuscript, as well as C. H. Heusser and S. Alkan for anti-IL-4 and anti-IFN-γ antibodies. This work was sponsored by the Swiss National Science Foundation.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Jutel, M., Watanabe, T., Klunker, S. et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413, 420–425 (2001). https://doi.org/10.1038/35096564
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35096564
This article is cited by
-
Allergen immunotherapy: past, present and future
Nature Reviews Immunology (2023)
-
The mRNA expression and secretion of granzyme B are up-regulated via the histamine H2 receptor in human CD4+ T cells
Inflammation Research (2023)
-
The potential roles of amino acids and their major derivatives in the management of multiple sclerosis
Amino Acids (2022)
-
Regulation of osteoclastogenesis by mast cell in rheumatoid arthritis
Arthritis Research & Therapy (2021)
-
Vegetal diamine oxidase alleviates histamine-induced contraction of colonic muscles
Scientific Reports (2020)