Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas

Abstract

Genomic instability promotes tumorigenesis and can occur through various mechanisms, including defective segregation of chromosomes or inactivation of DNA mismatch repair1. Although B-cell lymphomas are associated with chromosomal translocations that deregulate oncogene expression2, a mechanism for genome-wide instability during lymphomagenesis has not been described. During B-cell development, the immunoglobulin variable (V) region genes are subject to somatic hypermutation in germinal-centre B cells3. Here we report that an aberrant hypermutation activity targets multiple loci, including the proto-oncogenes PIM1, MYC, RhoH/TTF (ARHH) and PAX5, in more than 50% of diffuse large-cell lymphomas (DLCLs), which are tumours derived from germinal centres. Mutations are distributed in the 5′ untranslated or coding sequences, are independent of chromosomal translocations, and share features typical of V-region-associated somatic hypermutation. In contrast to mutations in V regions, however, these mutations are not detectable in normal germinal-centre B cells or in other germinal-centre-derived lymphomas, suggesting a DLCL-associated malfunction of somatic hypermutation. Intriguingly, the four hypermutable genes are susceptible to chromosomal translocations in the same region, consistent with a role for hypermutation in generating translocations by DNA double-strand breaks4,5,6. By mutating multiple genes, and possibly by favouring chromosomal translocations, aberrant hypermutation may represent the major contributor to lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mutational analysis of PIM1 (a), MYC (b), RhoH/TTF (c) and PAX5 (d).
Figure 2: Mutation frequencies of PIM1, MYC, RhoH/TTF, PAX5, BCL6 and immunoglobulin V h in normal and transformed B cells.
Figure 3: Distribution of somatic mutations from the transcription initiation site.
Figure 4: Hypermutable regions are susceptible to chromosomal translocations.

Similar content being viewed by others

References

  1. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    ADS  CAS  PubMed  Google Scholar 

  2. Dalla-Favera, R. & Gaidano, G. in Cancer. Principles and Practice of Oncology (ed. DeVita, V. T. Jr, Hellman S. & Rosenberg, S. A.) 2215–2235 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  3. Klein, U. et al. Somatic hypermutation in normal and transformed human B cells. Immunol. Rev. 162, 261–280 (1998).

    CAS  PubMed  Google Scholar 

  4. Goossens, T., Klein, U. & Küppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl Acad. Sci. USA 95, 2463–2468 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papavasiliou, F. N. & Schatz, D. G. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408, 216–221 (2000).

    ADS  CAS  PubMed  Google Scholar 

  6. Bross, L. et al. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13, 589–597 (2000).

    CAS  PubMed  Google Scholar 

  7. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl Acad. Sci. USA 95, 11816–11821 (1998).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen, H. M., Peters, A., Baron, B., Zhu, X. & Storb, U. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280, 1750–1752 (1998).

    ADS  CAS  PubMed  Google Scholar 

  9. Müschen, M. et al. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J. Exp. Med. 192, 1833–1840 (2000).

    PubMed  PubMed Central  Google Scholar 

  10. Storb, U. et al. Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol. Rev. 162, 153–160 (1998).

    CAS  PubMed  Google Scholar 

  11. Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA 92, 12520–12524 (1995).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rabbitts, T. H., Hamlyn, P. H. & Baer, R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306, 760–765 (1983).

    ADS  CAS  PubMed  Google Scholar 

  13. Cuypers, H. T. et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37, 141–150 (1984).

    CAS  PubMed  Google Scholar 

  14. Akasaka, H. et al. Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res. 60, 2335–2341 (2000).

    CAS  PubMed  Google Scholar 

  15. Hoover, D., Friedmann, M., Reeves, R. & Magnuson, N. S. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J. Biol. Chem. 266, 14018–14023 (1991).

    CAS  PubMed  Google Scholar 

  16. Shirogane, T. et al. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11, 709–719 (1999).

    CAS  PubMed  Google Scholar 

  17. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Raffeld, M. et al. Clustered mutations in the transcriptional activation domain of Myc in 8q24 translocated lymphomas and their functional consequences. Curr. Top. Microbiol. Immunol. 194, 265–272 (1995).

    CAS  PubMed  Google Scholar 

  19. Cesarman, E., Dalla-Favera, R., Bentley, D. & Groudine, M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238, 1272–1275 (1987).

    ADS  CAS  PubMed  Google Scholar 

  20. Gu, W., Bhatia, K., Magrath, I. T., Dang, C. V. & Dalla-Favera, R. Binding and suppression of the Myc transcriptional activation domain by p107. Science 264, 251–254 (1994).

    ADS  CAS  PubMed  Google Scholar 

  21. Preudhomme, C. et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 19, 2023–2032 (2000).

    CAS  PubMed  Google Scholar 

  22. Morrison, A. M., Nutt, S. L., Thevenin, C., Rolink, A. & Busslinger, M. Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Semin. Immunol. 10, 133–142 (1998).

    CAS  PubMed  Google Scholar 

  23. Shen, H. M., Michael, N., Kim, N. & Storb, U. The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int. Immunol. 12, 1085–1093 (2000).

    CAS  PubMed  Google Scholar 

  24. Jungnickel, B. et al. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin's lymphoma. J. Exp. Med. 191, 395–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Neuberger, M. S. et al. Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol. Rev. 162, 107–116 (1998).

    CAS  PubMed  Google Scholar 

  26. Zan, H. et al. Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. J. Immunol. 162, 3437–3447 (1999).

    CAS  PubMed  Google Scholar 

  27. Gamberi, B. et al. Microsatellite instability is rare in B-cell non-Hodgkin's lymphomas. Blood 89, 975–979 (1997).

    CAS  PubMed  Google Scholar 

  28. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    CAS  PubMed  Google Scholar 

  29. Cigudosa, J. C. et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosom. Cancer 25, 123–133 (1999).

    CAS  PubMed  Google Scholar 

  30. Pasqualucci, L., Neri, A., Baldini, L., Dalla-Favera, R. & Migliazza, A. BCL-6 mutations are associated with immunoglobulin variable heavy chain mutations in B-cell chronic lymphocytic leukemia. Cancer Res. 60, 5644–5648 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Miljkovic and A.-M. Babiac for assistance in DNA sequencing; C. Göttlinger for help with the single-cell sorting; M. Introna for providing the sequence of the A-MYB gene, and B. Jungnickel for providing DNA from sorted human naive and germinal-centre B-cell populations. We are grateful to U. Klein for discussions and to R. Baer for critically reading the manuscript. L.P. was a Fellow of the American Italian Cancer Foundation. P.N. was supported by the Max Kade Foundation. This work was supported by grants from the National Institute of Health to R.D.-F. and R.S.K.C., and from the Deutsche Forschungsgemeinschaft and a Heisenberg Award to R.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dalla-Favera.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasqualucci, L., Neumeister, P., Goossens, T. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001). https://doi.org/10.1038/35085588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085588

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing