Abstract
The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 13, 397–411 (1911).
Rubin, H. Quantitative relations between causative virus and cell in the Rous No. 1 chicken sarcoma. Virology 1, 445–473 (1955).
Temin, H. M. & Rubin, H. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology 6, 669–688 (1958).
Halberstaedter, L., Doljanski, L. & Tenenbaum, E. Experiments on the cancerization of cells in vitro by means of Rous sarcoma agent. Brit. J. Exp. Pathol. 22, 179–187 (1941).
Temin, H. M. The control of cellular morphology in embryonic cells infected with Rous sarcoma virus in vitro. Virology 10, 182–197 (1960).
Rubin, H. & Vogt, P. K. An avian leukosis virus associated with stocks of Rous sarcoma virus. Virology 17, 184–194 (1962).
Hanafusa, H., Hanafusa, T. & Rubin, H. The defectiveness of Rous sarcoma virus. Proc. Natl Acad. Sci. USA 49, 572–580 (1963).
Martin, G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature 227, 1021–1023 (1970).
Goldé, A. Radio-induced mutants of the Schmidt–Ruppin strain of Rous sarcoma virus. Virology 40, 1022–1029 (1970).
Toyoshima, K., Friis, R. R. & Vogt, P. K. The reproductive and cell-transforming capacities of avian sarcoma virus B77: inactivation with UV light. Virology 42, 163–170 (1970).
Duesberg, P. H. & Vogt, P. K. Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc. Natl Acad. Sci. USA 67, 1673–1680 (1970).
Wang, L. H., Duesberg, P. H., Kawai, S. & Hanafusa, H. Location of envelope-specific and sarcoma-specific oligonucleotides on RNA of Schmidt–Ruppin Rous sarcoma virus. Proc. Natl Acad. Sci. USA 73, 447–451 (1976).
Bernstein, A., MacCormick, R. & Martin, G. S. Transformation-defective mutants of avian sarcoma viruses: the genetic relationship between conditional and nonconditional mutants. Virology 70, 206–209 (1976).
Czernilofsky, A. P. et al. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature 287, 198–203 (1980).
Czernilofsky, A. P. et al. Corrections to the nucleotide sequence of the src gene of Rous sarcoma virus. Nature 301, 736–738 (1983).
Takeya, T. & Hanafusa, H. DNA sequence of the viral and cellular src gene of chickens. II. Comparison of the src genes of two strains of avian sarcoma virus and of the cellular homolog. J. Virol. 44, 12–18 (1982).
Schwartz, D. E., Tizard, R. & Gilbert, W. Nucleotide sequence of Rous sarcoma virus. Cell 32, 853–869 (1983).
Varmus, H. E., Quintrell, N. & Wyke, J. Revertants of an ASV-transformed rat cell line have lost the complete provius or sustained mutations in src. Virology 108, 28–46 (1981).
Hirai, H. & Varmus, H. E. Mutations in Src homology regions 2 and 3 of activated chicken c-src that result in preferential transformation of mouse or chicken cells. Proc. Natl Acad. Sci. USA 87, 8592–8596 (1990).
DeClue, J. E. & Martin, G. S. Linker insertion-deletion mutagenesis of the v-src gene: isolation of host- and temperature-dependent mutants. J. Virol. 63, 542–554 (1989).
Anderson, D. D., Beckmann, R. P., Harms, E. H., Nakamura, K. & Weber, M. J. Biological properties of 'partial' transformation mutants of Rous sarcoma virus and characterization of their pp60src kinase. J. Virol. 37, 445–458 (1981).
Weiss, R., Teich, N., Varmus, H. & Coffin, J. RNA Tumor Viruses 2nd edn (Cold Spring Harbor Laboratory, New York, 1984).
Huebner, R. J. & Todaro, G. J. Oncogenes of RNA tumor viruses as determinants of cancer. Proc. Natl Acad. Sci. USA 64, 1087–1094 (1969).
Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).
Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).
Hanafusa, H., Halpern, C. C., Buchhagen, D. L. & Kawai, S. Recovery of avian sarcoma virus from tumors induced by transformation-defective mutants. J. Exp. Med. 146, 1735–1747 (1977).
Takeya, T. & Hanafusa, H. Structure and sequence of the cellular gene homologous to the RSV src gene and the mechanism for generating the transforming virus. Cell 32, 881–890 (1983).
Shalloway, D., Zelenetz, A. D. & Cooper, G. M. Molecular cloning and characterization of the chicken gene homologous to the transforming gene of Rous sarcoma virus. Cell 24, 531–541 (1981).
Parker, R. C., Varmus, H. E. & Bishop, J. H. Expression of v-src and chicken c-src in rat cells demonstrates qualitative differences between pp60v-src and pp60c-src. Cell 37, 131–139 (1984).
Shalloway, D., Coussens, P. M. & Yaciuk, P. Overexpression of the c-src protein does not induce transformation of NIH-3T3 cells. Proc. Natl Acad. Sci. USA 81, 7071–7075 (1984).
Iba, H., Takeya, T., Cross, F. R., Hanafusa, T. & Hanafusa, H. Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 81, 4424–4428 (1984).
Johnson, P. J., Coussens, P. M., Danko, A. V. & Shalloway, D. Overexpressed pp60c-src can induce focus formation without complete transformation of NIH-3T3 cells. Mol. Cell. Biol. 5, 1073–1083 (1985).
Pawson, T., Martin, G. S. & Smith, A. E. Cell-free translation of virion RNA from nondefective and transformation-defective Rous sarcoma viruses. J. Virol. 19, 950–967 (1976).
Beemon, K. & Hunter, T. In vitro translation yields a possible Rous sarcoma virus src gene product. Proc. Natl Acad. Sci. USA 74, 3302–3306 (1977).
Brugge, J. S. & Erikson, R. L. Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269, 346–348 (1977).
Collett, M. S. & Erikson, R. L. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl Acad. Sci. USA 75, 2021–2024 (1978).
Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E. & Bishop, J. M. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15, 561–572 (1978).
Collett, M. S., Brugge, J. S. & Erikson, R. L. Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product. Cell 15, 1363–1369 (1978).
Oppermann, H., Levinson, A. D., Varmus, H. E., Levintow, L. & Bishop, J. M. Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Proc. Natl Acad. Sci. USA 76, 1804–1808 (1979).
Eckhart, W., Hutchinson, M. A. & Hunter, T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18, 925–933 (1979).
Hunter, T. & Sefton, B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl Acad. Sci. USA 77, 1311–1315 (1980).
Ushiro, H. & Cohen, S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J. Biol. Chem. 255, 8363–8365 (1980).
Smart, J. E. et al. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc. Natl Acad. Sci. USA 78, 6013–6017 (1981).
Patschinsky, T., Hunter, T., Esch, F. S., Cooper, J. A. & Sefton, B. M. Analysis of the sequence of amino acids surrounding sites of tyrosine phosphorylation. Proc. Natl Acad. Sci. USA 79, 973–977 (1982).
Bolen, J. B. et al. Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation. Cell 38, 767–777 (1984).
Courtneidge, S. A. Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J. 4, 1471–1477 (1985).
Cooper, J. A., Gould, K. L., Cartwright, C. A. & Hunter, T. Tyr527 is phosphorylated in pp60c-src: implications for regulation. Science 231, 1431–1434 (1986).
Kmiecik, T. E. & Shalloway, D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 49, 65–73 (1987).
Cartwright, C. A., Eckhart, W., Simon, S. & Kaplan, P. L. Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell 49, 83–91 (1987).
Piwnica-Worms, H., Saunders, K. B., Roberts, T. M., Smith, A. E. & Cheng, S. H. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-src. Cell 49, 75–82 (1987).
Okada, M. & Nakagawa, H. A protein tyrosine kinase involved in regulation of pp60c-src function. J. Biol. Chem. 264, 20886–20893 (1989).
Duesberg, P. et al. Persistent Viruses (eds Stevens, J. G. et al.) 245–266 (Academic Press, New York, 1978).
Stone, J. C., Atkinson, T., Smith, M. & Pawson, T. Identification of functional regions in the transforming protein of Fujinami sarcoma virus by in-phase insertion mutagenesis. Cell 37, 549–558 (1984).
Sadowski, I., Stone, J. C. & Pawson, T. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6, 4396–4408 (1986).
Moran, M. F. et al. Src homology region 2 domains direct protein–protein interactions in signal transduction. Proc. Natl Acad. Sci. USA 87, 8622–8626 (1990).
Matsuda, M., Mayer, B. J., Fukui, Y. & Hanafusa, H. Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248, 1537–1539 (1990).
Mayer, B. J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).
Ren, R., Mayer, B. J., Cicchetti, P. & Baltimore, D. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259, 1157–1161 (1993).
Roussel, R. R., Brodeur, S. R., Shalloway, D. & Laudano, A. P. Selective binding of activated pp60c-src by an immobilized synthetic phosphopeptide modeled on the carboxyl terminus of pp60c-src. Proc. Natl Acad. Sci. USA 88, 10696–10700 (1991).
Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126 (1993).
Murphy, S. M., Bergman, M. & Morgan, D. O. Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5290–5300 (1993).
Superti-Furga, G., Fumagalli, S., Koegl, M., Courtneidge, S. A. & Draetta, G. Csk inhibition of c-Src activity requires both the SH2 and SH3 domains of Src. EMBO J. 12, 2625–2634 (1993).
Okada, M., Howell, B. W., Broome, M. A. & Cooper, J. A. Deletion of the SH3 domain of Src interferes with regulation by the phosphorylated carboxyl-terminal tyrosine. J. Biol. Chem. 268, 18070–18075 (1993).
Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).
Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).
Xu, W., Doshi, A., Lei, M., Eck, M. J. & Harrison, S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).
Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).
Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).
Ambros, V. R., Chen, L. B. & Buchanan, J. M. Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus. Proc. Natl Acad. Sci. USA 72, 3144–3148 (1975).
Beug, H., Claviez, M., Jockusch, B. M. & Graf, T. Differential expression of Rous Sarcoma virus-specific transformation parameters in enucleated cells. Cell 14, 843–856 (1978).
Groudine, M. & Weintraub, H. Activation of cellular genes by avian RNA tumor viruses. Proc. Natl Acad. Sci. USA 77, 5351–5354 (1980).
Erikson, E. & Erikson, R. L. Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21, 829–836 (1980).
Radke, K. & Martin, G. S. Transformation by Rous sarcoma virus: effects of src gene expression on the synthesis and phosphorylation of cellular polypeptides. Proc. Natl Acad. Sci. USA 76, 5212–5216 (1979).
Cooper, J. A. & Hunter, T. Changes in protein phosphorylation in Rous sarcoma virus-transformed chicken embryo cells. Mol. Cell. Biol. 1, 165–178 (1981).
Ross, A. H., Baltimore, D. & Eisen, H. N. Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature 294, 654–656 (1981).
Frackelton, A. R. Jr., Ross, A. H. & Eisen, H. N. Characterization and use of monoclonal antibodies for isolation of phosphotyrosyl proteins from retrovirus-transformed cells and growth factor-stimulated cells. Mol. Cell. Biol. 3, 1343–1352 (1983).
Kanner, S. B., Reynolds, A. B. & Parsons, J. T. Immunoaffinity purification of tyrosine-phosphorylated cellular proteins. J. Immunol. Methods 120, 115–124 (1989).
Lipfert, L. et al. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J. Cell Biol. 119, 905–912 (1992).
Sakai, R. et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 13, 3748–3756 (1994).
Shah, K., Liu, Y., Deirmengian, C. & Shokat, K. M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl Acad. Sci. USA 94, 3565–3570 (1997).
Sugimoto, Y., Whitman, M., Cantley, L. C. & Erikson, R. L. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl Acad. Sci. USA 81, 2117–2121 (1984).
Macara, I. G., Marinetti, G. V. & Balduzzi, P. C. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: possible role in tumorigenesis. Proc. Natl Acad. Sci. USA 81, 2728–2732 (1984).
Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).
Smith, M. R., DeGudicibus, S. J. & Stacey, D. W. Requirement for c-ras proteins during viral oncogene transformation. Nature 320, 540–543 (1986).
Aftab, D. T., Kwan, J. & Martin, G. S. Ras-independent transformation by v-Src. Proc. Natl Acad. Sci. USA 94, 3028–3033 (1997).
Penuel, E. & Martin, G. S. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol. Biol. Cell 10, 1693–1703 (1999).
Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995).
Turkson, J. et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18, 2545–2552 (1998).
Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W. & Darnell, J. E. Jr Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558 (1998).
Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).
Ralston, R. & Bishop, J. M. The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc. Natl Acad. Sci. USA 82, 7845–7849 (1985).
Gould, K. L. & Hunter, T. Platelet-derived growth factor induces multisite phosphorylation of pp60c-src and increases its protein-tyrosine kinase activity. Mol. Cell. Biol. 8, 3345–3356 (1988).
Kypta, R. M., Goldberg, Y., Ulug, E. T. & Courtneidge, S. A. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell 62, 481–492 (1990).
Twamley-Stein, G. M., Pepperkok, R., Ansorge, W. & Courtneidge, S. A. The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc. Natl Acad. Sci. USA 90, 7696–7700 (1993).
Chackalaparampil, I. & Shalloway, D. Altered phosphorylation and activation of pp60c-src during fibroblast mitosis. Cell 52, 801–810 (1988).
Roche, S., Fumagalli, S. & Courtneidge, S. A. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science 269, 1567–1569 (1995).
Cotton, P. C. & Brugge, J. S. Neural tissues express high levels of the cellular src gene product pp60c-src. Mol. Cell. Biol. 3, 1157–1162 (1983).
Golden, A., Nemeth, S. P. & Brugge, J. S. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity. Proc. Natl Acad. Sci. USA 83, 852–856 (1986).
Rohrschneider, L. R. Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl Acad. Sci. USA 77, 351–358 (1980).
Ferrell, J. E. Jr & Martin, G. S. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb–IIIa in platelets. Proc. Natl Acad. Sci. USA 86, 2234–2238 (1989).
Golden, A., Brugge, J. S. & Shattil, S. J. Role of platelet membrane glycoprotein IIb–IIIa in agonist-induced tyrosine phosphorylation of platelet proteins. J. Cell. Biol. 111, 3117–3127 (1990).
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).
Stein, P. L., Vogel, H. & Soriano, P. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8, 1999–2007 (1994).
Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).
Broome, M. A. & Courtneidge, S. A. No requirement for src family kinases for PDGF signaling in fibroblasts expressing SV40 large T antigen. Oncogene 19, 2867–2869 (2000).
Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell. Dev. Biol. 13, 513–609 (1997).
Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).
Bjorge, J. D., Jakymiw, A. & Fujita, D. J. Selected glimpses into the activation and function of Src kinase. Oncogene 19, 5620–5635 (2000).
Abram, C. L. & Courtneidge, S. A. Src family tyrosine kinases and growth factor signaling. Exp. Cell Res. 254, 1–13 (2000).
Luttrell, L. M. et al. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).
Wong, B. R. et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol. Cell 4, 1041–1049 (1999).
Maller, J. L. The elusive progesterone receptor in Xenopus oocytes. Proc. Natl Acad. Sci. USA 98, 8–10 (2001).
Jacobs, C. & Rubsamen, H. Expression of pp60c-src protein kinase in adult and fetal human tissue: high activities in some sarcomas and mammary carcinomas. Cancer Res. 43, 1696–1702 (1983).
Luttrell, D. K., Luttrell, L. M. & Parsons, S. J. Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol. Cell. Biol. 8, 497–501 (1988).
Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).
Bolen, J. B., Veillette, A., Schwartz, A. M., DeSeau, V. & Rosen, N. Activation of pp60c-src protein kinase activity in human colon carcinoma. Proc. Natl Acad. Sci. USA 84, 2251–2255 (1987).
Cartwright, C. A., Meisler, A. I. & Eckhart, W. Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. Proc. Natl Acad. Sci. USA 87, 558–562 (1990).
Irby, R. B. et al. Activating SRC mutation in a subset of advanced human colon cancers. Nature Genet. 21, 187–190 (1999).
Blake, R. A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20, 9018–9027 (2000).
Acknowledgements
I thank S. Taylor, M. Botchan, J. Brugge and T. Hunter for helpful comments on the manuscript.
Author information
Authors and Affiliations
Related links
Related links
DATABASE LINKS
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Martin, G. The hunting of the Src. Nat Rev Mol Cell Biol 2, 467–475 (2001). https://doi.org/10.1038/35073094
Issue Date:
DOI: https://doi.org/10.1038/35073094