Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Potassium leak channels and the KCNK family of two-p-domain subunits

Abstract

With a bang, a new family of potassium channels has exploded into view. Although KCNK channels were discovered only five years ago, they already outnumber other channel types. KCNK channels are easy to identify because of their unique structure — they possess two pore-forming domains in each subunit. The new channels function in a most remarkable fashion: they are highly regulated, potassium-selective leak channels. Although leak currents are fundamental to the function of nerves and muscles, the molecular basis for this type of conductance had been a mystery. Here we review the discovery of KCNK channels, what has been learned about them and what lies ahead. Even though two-P-domain channels are widespread and essential, they were hidden from sight in plain view — our most basic questions remain to be answered.

Key Points

  • 50 years after leak currents were first described, potassium-selective leak channels have been found —the KCNK channel family. KCNK channels are numerous and widespread. The genes encode unique channel subunits with two pore-forming P domains.

  • Whereas fungi and plants contain variants that operate as non-voltage dependent outward rectifiers, animals have at least 50 genes for the KCNK channels that function as open rectifiers by primarily passing outward current under physiological potassium concentrations.

  • Studies of single KCNK channels have confirmed that leak currents result from channels open at rest and have shown that leak channels are not always open. Instead, like their native counterparts, KCNK channels are subject to strict regulation by second messenger systems.

  • KCNK channels seem to control the excitability of nerves and heart, and perhaps to mediate the effects of volatile anaesthetics. So, neurotransmitter-mediated inhibition of resting potassium flux has an excitatory influence, whereas increased activity with anaesthetic exposure stabilizes cells at rest.

  • Regulation of one KCNK isolate has been observed to reversibly produce leak or voltage-dependent function, modes that stabilize cells and facilitate repetitive excitation, respectively. This significantly expands the functional spectrum of KCNK channels.

  • Many questions regarding KCNK channels remain to be answered. Where are their gates and do they resemble the gates of one-P-domain channels? Do two-P-domain channels function as dimers? Do both pore domains contribute directly to pore formation? Do KCNK subunits form heteromers? What roles do KCNK channels play in health and disease?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potassium channels: membrane topology and CURRENT–VOLTAGE RELATIONSHIPS.
Figure 2: KCNK0 single channels open and close, show multi-ion attributes and are regulated.
Figure 3: KCNK2: a leak pore that can also operate as a voltage-gated channel.
Figure 4: KCNK3 channels: molecular correlation with native cardiac and neuronal currents.

Similar content being viewed by others

References

  1. Goldman, D. E. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–60 ( 1943).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodgkin, A. L. & Katz, B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108, 37–77 (1949).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodgkin, A. L. & Huxely, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve . J. Physiol. 117, 500– 544 (1952).References 1 3 are classical works on currents that mediate excitable membrane function including a resting leak.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Adams, D. J., Smith, S. J. & Thompson, S. H. Ionic currents in molluscan soma. Annu. Rev. Neurosci. 3, 141–167 (1980).

    CAS  PubMed  Google Scholar 

  5. Jones, S. W. On the resting potential of isolated frog sympathetic neurons. Neuron 3, 153–161 ( 1989).

    CAS  PubMed  Google Scholar 

  6. Koyano, K., Tanaka, K. & Kuba, K. A patch-clamp study on the muscarine-sensitive potassium channel in bullfrog sympathetic ganglion cells. J. Physiol. 454, 231–246 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang, D. C. Is the K+ permeability of the resting membrane controlled by the excitable K+ channel? Biophys. J. 50, 1095–1100 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmidt, H. & Stampfli, R. The effect of tetraethylammonium chloride on single Ranvier's nodes. Pflugers Arch. Gesamte Physiol. Menschen Tiere 287, 311–325 (1966).

    CAS  PubMed  Google Scholar 

  9. Hille, B. Potassium channels in myelinated nerve. Selective permeability to small cations . J. Gen. Physiol. 61, 669– 686 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Baker, M., Bostock, H., Grafe, P. & Martius, P. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons. J. Physiol. 383, 45–67 ( 1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicoll, R. A., Malenka, R. C. & Kauer, J. A. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev. 70, 513–565 (1990).

    CAS  PubMed  Google Scholar 

  12. McCormick, D. A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20 , 185–215 (1997).

    CAS  PubMed  Google Scholar 

  13. Koh, D. S., Jonas, P., Brau, M. E. & Vogel, W. A TEA-insensitive flickering potassium channel active around the resting potential in myelinated nerve. J. Membr. Biol. 130, 149– 162 (1992).

    CAS  PubMed  Google Scholar 

  14. Wu, J. V., Rubinstein, C. T. & Shrager, P. Single channel characterization of multiple types of potassium channels in demyelinated Xenopus axons. J. Neurosci. 13, 5153–5163 ( 1993).

    CAS  PubMed  Google Scholar 

  15. Apkon, M. & Nerbonne, J. M. Are there multiple types of depolarization–activated K+ channels in adult ventricular myocytes? Biophys. J. 53, 458a ( 1988).

  16. Yue, D. T. & Marban, E. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pfluegers Arch. 413, 127–133 ( 1988).

    CAS  Google Scholar 

  17. Boyle, W. A. & Nerbonne, J. M. Two functionally distinct 4-aminopyridine-sensitive outward K+ currents in rat atrial myocytes. J. Gen. Physiol. 100, 1041–1067 (1992).

    CAS  PubMed  Google Scholar 

  18. Wang, Z., Fermini, B. & Nattel, S. Sustained depolarization-induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res. 73, 1061–1076 (1993).

    CAS  PubMed  Google Scholar 

  19. Backx, P. H. & Marban, E. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes . Circ. Res. 72, 890–900 (1993).

    CAS  PubMed  Google Scholar 

  20. Van Wagoner, D. R., Pond, A. L., McCarthy, P. M., Trimmer, J. S. & Nerbonne, J. M. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation . Circ. Res. 80, 772–781 (1997).

    CAS  PubMed  Google Scholar 

  21. Siegelbaum, S. A., Camardo, J. S. & Kandel, E. R. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurons. Nature 299, 413–417 (1982).

    CAS  PubMed  Google Scholar 

  22. Shen, K. Z., North, R. A. & Surprenant, A. Potassium channels opened by noradrenaline and other transmitters in excised membrane patches of guinea-pig submucosal neurons . J. Physiol. (Lond.) 445, 581– 599 (1992).

    CAS  Google Scholar 

  23. Buckler, K. J. A novel oxygen-sensitive potassium current in rat carotid body type I cells . J. Physiol. 498, 649– 662 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wagner, P. G. & Dekin, M. S. cAMP modulates an S-type K+ channel coupled to GABAB receptors in mammalian respiratory neurons. Neuroreport 8, 1667– 1670 (1997).

    CAS  PubMed  Google Scholar 

  25. Ketchum, K. A., Joiner, W. J., Sellers, A. J., Kaczmarek, L. K. & Goldstein, S. A. N. A new family of outwardly-rectifying potassium channel proteins with two pore domains in tandem. Nature 376, 690–695 ( 1995).

    CAS  PubMed  Google Scholar 

  26. Zhou, X. L., Vaillant, B., Loukin, S. H., Kung, C. & Saimi, Y. YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS Lett. 373, 170–176 ( 1995).

    CAS  PubMed  Google Scholar 

  27. Reid, J. D. et al. The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains. Receptors Channels 4, 51–62 (1996).References 25 27 describe the discovery of TOK1, the first cloned two-P-domain channel, the first cloned non-voltage gated outward rectifier and the first channel with a predicted two-P/eight-transmembrane domain subunit topology.

    CAS  PubMed  Google Scholar 

  28. Vergani, P., Miosga, T., Jarvis, S. M. & Blatt, M. R. Extracellular K+ and Ba2+ mediate voltage-dependent inactivation of the outward-rectifying K+ channel encoded by the yeast gene TOK1. FEBS Lett. 405, 337 –344 (1997).

    CAS  PubMed  Google Scholar 

  29. Yost, C. S., Gray, A. T., Winegar, B. D. & Leonoudakis, D. Baseline K+ channels as targets of general anesthetics: studies of the action of volatile anesthetics on TOK1. Toxicol Lett. 100, 293–300 (1998).

    PubMed  Google Scholar 

  30. Gray, A. T., Winegar, B. D., Leonoudakis, D. J., Forsayeth, J. R. & Yost, C. S. TOK1 is a volatile anesthetic stimulated K+ channel. Anesthesiology 88, 1076–1084 ( 1998).

    CAS  PubMed  Google Scholar 

  31. Vergani, P., Hamilton, D., Jarvis, S. & Blatt, M. R. Mutations in the pore regions of the yeast K+ channel YKC1 affect gating by extracellular K+. EMBO J. 17, 7190–7198 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fairman, C., Zhou, X. L., & Kung, C. Potassium uptake through the TOK1 K+ channel in the budding yeast. J. Membr. Biol. 168, 149–157 (1999).

    CAS  PubMed  Google Scholar 

  33. Ahmed, A. et al. A molecular target for viral killer toxin: TOK1 potassium channels . Cell 99, 283–291 (1999).Identification of TOK1 as a target for viral K1 killer toxin.

    CAS  PubMed  Google Scholar 

  34. Loukin, S. H. & Saimi, Y. K+-dependent composite gating of the yeast K+ channel, Tok1. Biophys. J. 77, 3060–3070 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sesti, F., Shih, T., Nikoleva, N. & Goldstein, S. A. N. The basis for immunity to killer toxin: channel block. Biophys. J. 80, 446a (2001).

  36. Goldstein, S. A. N., Price, L. A., Rosenthal, D. N. & Pausch, M. H. ORK1, a potassium-selective leak channel with two pore domains cloned from Drosophila melanogaster by expression in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 93, 13256 –13261 (1996).

    CAS  PubMed  Google Scholar 

  37. Zilberberg, N., Ilan, N., Gonzalez-Colaso, R. & Goldstein, S. A. N. Opening and closing of KCNK0 potassium leak channels is tightly-regulated . J. Gen. Physiol. 116, 721– 734 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ilan, N. & Goldstein, S. A. N. KCNK0: single, cloned potassium leak channels are multi-ion pores Biophys. J. 80, 241–254 (2001).References 36 38 describe KCNK0, the first cloned example of a canonical leak channel (an open rectifier) and the first functional channel with a predicted two-P/four-transmembrane domain subunit topology.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yellen, G., Jurman, M. E., Abramson, T. & MacKinnon, R. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel. Science 251, 939–942 (1991).

    CAS  PubMed  Google Scholar 

  40. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sigworth, F. J. Voltage gating of ion channels. Q. Rev. Biophys. 27 , 1–40 (1994).

    CAS  PubMed  Google Scholar 

  42. Yellen, G. The moving parts of voltage-gated ion channels. Q. Rev. Biophys. 31, 239–295 ( 1998).

    CAS  PubMed  Google Scholar 

  43. Vandenberg, C. A. Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc. Natl Acad. Sci. USA 84, 2560–2564 (1987).

    CAS  PubMed  Google Scholar 

  44. Jan, L. Y. & Jan, Y. N. Potassium channels and their evolving gates. Nature 371, 119– 122 (1994).

    CAS  PubMed  Google Scholar 

  45. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    CAS  PubMed  Google Scholar 

  46. MacKinnon, R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350, 232– 235 (1991).

    CAS  PubMed  Google Scholar 

  47. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  PubMed  Google Scholar 

  48. Lesage, F. et al. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J. 15 , 1004–1011 (1996). Reference 48 and reference 105 describe KCNK1, the first mammalian two-P/four-transmembrane domain clone; now recognized to be in part of a so far non-functional group.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Goldstein, S. A. N., Wang, K. W., Ilan, N. & Pausch, M. Sequence and function of the two P domain potassium channels: implications of an emerging superfamily . J. Mol. Med. 76, 13–20 (1998).

    CAS  PubMed  Google Scholar 

  50. Pountney, D. J. et al. Identification and cloning of TWIK-originated similarity sequence (TOSS): a novel human 2-pore K+ channel principal subunit. FEBS Lett. 450, 191–196 (1999).

    CAS  PubMed  Google Scholar 

  51. Bockenhauer, D., Nimmakayalu, M. A., Ward, D. C., Goldstei, S. A. N. & Gallagher, P. G. Genomic organization and chromosomal localization of the murine 2 P domain potassium channel gene Kcnk8: conservation of gene structure in 2 P domain potassium channels. Gene (in the press.)

  52. Salinas, M. et al. Cloning of a new mouse two-P domain channel subunit and a human homologue with a unique pore structure. J. Biol. Chem. 274, 11751–11760 (1999).

    CAS  PubMed  Google Scholar 

  53. Chavez, R. A. et al. TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J. Biol. Chem. 274, 7887–7892 (1999).

    CAS  PubMed  Google Scholar 

  54. Wang, Z. W., Kunkel, M. T., Wei, A., Butler, A. & Salkoff, L. Genomic organization of nematode 4TM K+ channels. Ann. NY Acad. Sci. 868, 286– 303 (1999).

    CAS  PubMed  Google Scholar 

  55. Kunkel, M. T., Johnstone, D. B., Thomas, J. H. & Salkoff, L. Mutants of a temperature-sensitive two-P domain potassium channel. J. Neurosci. 20, 7517–7524 (2000).Describes the identification of TWK-18, the first functional two-P/four-transmembrane domain clone of at least 42 potential variants in C. elegans.

    CAS  PubMed  Google Scholar 

  56. Czempinski, K., Zimmermann, S., Ehrhardt, T. & Muller-Rober, B. New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J. 16, 2565–2575 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bockenhauer, D., Zilberberg, N. & Goldstein, S. A. N. A hippocampal potassium leak pore into a voltage-dependent channel by phosphorylation. (submitted).

  58. Bockenhauer, D. & Goldstein, S. A. N. Excitement: creating a voltage-dependent potassium channel from a leak. Biophys. J. 80, 193a (2001). References 57 and 58 show that regulation of cloned and hippocampal KCNK2 reversibly yields open rectifier or voltage-dependent K+ channel function.

    Google Scholar 

  59. Loukin, S. H. et al. Random mutagenesis reveals a region important for gating of the yeast K+ channel Ykc1. EMBO J. 16 , 4817–4825 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim, Y., Bang, H. & Kim, D. TASK-3, a new member of the tandem pore K+ channel family. J. Biol. Chem. 275, 9340–9347 (2000).

    CAS  PubMed  Google Scholar 

  61. Lopes, C. M. B., Gallagher, P. G., Buck, M. E., Butler, M. H. & Goldstein, S. A. N. Proton block and voltage-gating are potassium-dependent in the cardiac leak channel Kcnk3. J. Biol. Chem. 275, 16969–16978 ( 2000).Reference 61 and references 76 81 describe the cloning and characterization of KCNK3, a pH-sensitive open rectifier.

    CAS  PubMed  Google Scholar 

  62. Hille, B. & Schwarz, W. Potassium channels as multi-ion single-file pores J. Gen. Physiol. 72, 409 –442 (1978).

    CAS  PubMed  Google Scholar 

  63. Yellen, G. Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells. J. Gen. Physiol. 84, 157–186 (1984).

    CAS  PubMed  Google Scholar 

  64. Neyton, J. & Miller, C. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. J. Gen. Physiol. 92, 569–586 ( 1988).

    CAS  PubMed  Google Scholar 

  65. Heginbotham, L. & MacKinnon, R. Conduction properties of the cloned Shaker K+ channel. Biophys. J. 65, 2089–2096 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu, Z. & MacKinnon, R. A conductance maximum observed in an inward-rectifier potassium channel. J. Gen. Physiol. 104, 477–486 (1994).

    CAS  PubMed  Google Scholar 

  67. Chapman, M. L., Krovetz, H. S. & VanDongen, A. M. J. GYGD pore motifs in neighbouring potassium channel subunits interact to determine ion selectivity. J. Physiol. 530, 21–33 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Levitan, I. B. Modulation of ion channels by protein phosphorylation and dephosphorylation . Annu. Rev. Physiol. 56, 193– 212 (1994).

    CAS  PubMed  Google Scholar 

  69. Fink, M. et al. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 15, 6854–6862 ( 1996).Describes the identification of KCNK2, the first functional two-P/four-transmembrane domain clone from a mammal.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Maingret, F. TREK-1 is a heat-activated background K+ channel. EMBO J. 19, 2483–2491 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honore, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000).

    CAS  PubMed  Google Scholar 

  72. Meadows, H. J. et al. Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch. Eur. J. Physiol. 439, 714–722 (2000).

    CAS  Google Scholar 

  73. Rajan, S. et al. THIK-1 and THIK–2, a novel subfamily of tandem pore domain K+ channels. J. Biol. Chem. (in the press).

  74. Greenwald, I. S. & Horvitz, H. R. unc-93(e1500): A behavioral mutant of Caenorhabditis elegans that defines a gene with a wild-type null phenotype. Genetics 96, 147–164 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Duprat, F. et al. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 16, 5464–5471 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Leonoudakis, D. et al. An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J. Neurosci. 18, 868–877 (1998).

    CAS  PubMed  Google Scholar 

  77. Kim, D., Fujita, A., Horio, Y. & Kurachi, Y. Cloning and functional expression of a novel cardiac two-pore background K+ channel (cTBAK-1). Circ. Res. 82, 513– 518 (1998).

    CAS  PubMed  Google Scholar 

  78. Lopes, C. M. B., Gallagher, P. G., Wong, C., Buck, M. & Goldstein, S. A. N. OATs: open, acid-sensitive, two P domain K+ channels from mouse heart. J. Biophys. 74, A44 (1998).

  79. Kindler, C. H., Yost, C. S. & Gray, A. T. Local anesthetic inhibition of baseline potassium channels with two pore domains in tandem. Anesthesiology 90, 1092–1102 (1999).

    CAS  PubMed  Google Scholar 

  80. Manjunath, N. A., Bray-Ward, P., Goldstein, S. A. N. & Gallagher, P. G. Assignment of the 2 P domain, acid-sensitive potassium channel gene OAT1 (KCNK3) to human chromosome 2p23. 3-p24. 1 and murine chromosome band 5B by in situ hybridization. Cytogen. Cell Gen. 86, 242–243 (1999).

    CAS  Google Scholar 

  81. Kim, Y., Bang, H. & Kim, D. TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am. J. Physiol. 277, H1669–H1678 (1999).

  82. Millar, J. A. et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc. Natl Acad. Sci. USA 97, 3614–3618 ( 2000).

    CAS  PubMed  Google Scholar 

  83. Talley, E. M. Lei, Q. B., Sirois, J. E. & Bayliss, D. A. TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25, 399–410 (2000).

    CAS  PubMed  Google Scholar 

  84. Buckler, K. J., Williams, B. A. & Honore, E. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J. Physiol. (Lond.) 525, 135–142 (2000).

    CAS  Google Scholar 

  85. Czirjak, G., Fischer, T., Spat, A., Lesage, F. & Enyedi, P. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol. Endocrinol. 14, 863–874 (2000).

    CAS  PubMed  Google Scholar 

  86. Sirois, J. E., Lei, Q., Talley, E. M., Lynch, C. & Bayliss, D. A. The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J. Neurosci. 20, 6347–6354 (2000).References 81 86 along with reference 61 describe KCNK3-like native currents: evidence for a contribution to cardiac I Kp , neurotransmitter-inhibited resting currents and the action of inhalled anaesthetics in the nervous system.

    CAS  PubMed  Google Scholar 

  87. Gray, A. T. et al. Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5. Anesthesiology 92, 1722–1730 (2000).

    CAS  PubMed  Google Scholar 

  88. Nerbonne, J. M. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J. Physiol. 525, 285–298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brown, D. A. & Adams, P. R. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 283, 673–676 ( 1980).

    CAS  PubMed  Google Scholar 

  90. Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890– 1893 (1998).

    CAS  PubMed  Google Scholar 

  91. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).

    CAS  Google Scholar 

  92. Patel, A. J. et al. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 17, 4283– 4290 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Maingret, F., Fosset, M., Lesage, F., Lazdunski, M. & Honore, E. TRAAK is a mammalian neuronal mechano-gated K+ channel. J. Biol. Chem. 274, 1381 –1387 (1999).

    CAS  PubMed  Google Scholar 

  94. Klein, M. & Kandel, E. R. Mechanism of calcium current modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia . Proc. Natl Acad. Sci. USA 77, 6912 –6916 (1980).

    CAS  PubMed  Google Scholar 

  95. O'Kelly, I., Stephens, R. H., Peers, C. & Kemp, P. J. Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am. J. Physiol. 276, L96–L104 (1999).

  96. Lesage, F. et al. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge. EMBO J. 15, 6400 –6407 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dodge, F. A. & Frankenhaeuser, B. Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. 143, 76–90 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Campbell, D. T. & Hille, B. Kinetic and pharmacological properties of the sodium channel of frog skeletal muscle. J. Gen. Physiol. 67, 309–323 ( 1976).

    CAS  PubMed  Google Scholar 

  99. Anderson, J. A., Huprikar, S. S., Kochian, L. V., Lucas, W. J. & Gaber, R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 89, 3736 –3740 (1992).

    CAS  PubMed  Google Scholar 

  100. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins . Nature 374, 135–141 (1995).

    CAS  PubMed  Google Scholar 

  101. Abbott, G. W. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104, 217– 231 (2001).

    CAS  PubMed  Google Scholar 

  102. Splawski, I. et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185 (2000).

    CAS  PubMed  Google Scholar 

  103. Schroeder, B. C. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199 ( 2000).

    CAS  PubMed  Google Scholar 

  104. Melman, Y. F., Domenech, A., de la Luna, S. & McDonald, T. V. Structural determinants of KvLQT1 control by the KCNE family of proteins. J. Biol. Chem. (in the press).

  105. Orias, M., Velazquez, H., Tung, F., Lee, G. & Desir, G. V. Cloning and localization of a double-pore K channel, KCNK1: exclusive expression in distal nephron segments. Am. J. Physiol. 273, F663–F666 (1997).

  106. Lesage, F. et al. The structure, function and distribution of the mouse TWIK-1 K+ channel. FEBS Lett. 402, 28–32 (1997).

    CAS  PubMed  Google Scholar 

  107. Fink, M. et al. 1998. A neuronal two P domain K+ channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J. 17, 3297–3308 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Reyes, R. et al. Immunolocalization of the arachidonic acid and mechanosensitive baseline traak potassium channel in the nervous system. Neuroscience 95, 893–901 ( 2000).

    CAS  PubMed  Google Scholar 

  109. Lesage, F., Maingret, F. & Lazdunski, M. Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K+ channel. FEBS Lett. 471, 137–140 (2000).

    CAS  PubMed  Google Scholar 

  110. Reyes, R. et al. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J. Biol. Chem. 273, 30863–30869 (1998).

    CAS  PubMed  Google Scholar 

  111. Gray, A. T., Kindler, C. H., Sampson, E. R. & Yost, C. S. Assignment of KCNK6 encoding the human weak inward rectifier potassium channel TWIK-2 to chromosome band 19q13.1 by radiation hybrid mapping. Cytogenet. Cell Genet. 84, 190–191 (1999).

    CAS  PubMed  Google Scholar 

  112. Patel, A. J. et al. TWIK-2, an inactivating 2P domain K+ channel . J. Biol. Chem. 275, 28722– 28730 (2000).

    CAS  PubMed  Google Scholar 

  113. Chapman, C. G. et al. Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Mol. Brain Res. 82, 74–83 (2000).

    CAS  PubMed  Google Scholar 

  114. Rajan, S. et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel — an extracellular histidine as pH sensor. J. Biol. Chem. 275, 16650–16657 (2000).

    CAS  PubMed  Google Scholar 

  115. Bang, H., Kim, Y. & Kim, D. TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J. Biol. Chem. 275, 17412 –17419 (2000).

    CAS  PubMed  Google Scholar 

  116. Lesage, F., Terrenoire, C., Romey, G. & Lazdunski, M. Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275, 28398–28405 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to S.A.N.G. from the National Institutes of Health. We are grateful to our many colleagues who have shared their thoughts during the preparation of this review: D. A. Bayliss (University of Virginia), M. R. Blatt (University of Glasgow), C. G. Chapman (SBPHRD), J. Daut (Universität Marburg), A. T. Grey (University of California, San Francisco), H. R. Horvitz (MIT), D. Kim (Chicago Medical School), A. Mathie (Imperial College of Science, Technology & Medicine, London), I. Perez de la Cruz (MIT), D. J. Pountney (New York University), L. Salkoff (Washington University, St. Louis), E. Talley (University of Virginia), J. White (HUGO) and S. Yost (University of California, San Francisco).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

TOK1

KCNK0

KCNK1

KCNK2

KCNK3

Kcnk3

KCNK4

KCNK5

KCNK6

KCNK7

Kcnk8

KCNK9

KCO1

Glossary

POLYAMINES

Organic compounds that contain two or more amino groups. Putrescine, spermine and spermidine are prime examples.

MACROSCOPIC CURRENTS

The sum of the ionic currents measured simultaneously from a large population of channels.

Q10

The ratio of reaction rates for a 10°C increase in temperature.

SYMMETRIC IONIC CONDITIONS

Conditions in which the concentration of a particular ion is the same on both sides of a membrane.

CURRENT–VOLTAGE RELATIONSHIP

The changes in ionic current as a function of membrane voltage.

ANOMALOUS MOLE-FRACTION BEHAVIOUR

When two or more ions simultaneously reside inside a channel, their movement through the pore is dependent on each other. When channel conductance is measured as a function of the concentration ratio of two different ionic species and the conductance goes through a minimum rather than changing linearly as the ratio changes, then it is said to show anomalous mole-fraction behaviour.

RELATIVE PERMEABILITY SERIES

A given ion channel can allow the passage of related ionic species, although not all with the same ease. Potassium channels can be grouped by their relative permeability for monovalent cations at equilibrium.

CAROTID BODY

A chemoreceptor organ located above the bifurcation of the common carotid artery. It monitors changes in blood O2 and CO2content and pH, thus helping to control respiratory activity.

ANGIOTENSIN II

Vasoconstrictor octapeptide that acts on the zona glomerulosa of the adrenal cortex to increase aldosterone production and, consequently, to stimulate sodium uptake by the kidney.

M CURRENT

Cationic current modulated by the activation of muscarinic receptors that participates in determining the subthreshold excitability of neurons and their responsiveness to synaptic input. The underlying channel is thought to consist of KCNQ potassium channel subunits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, S., Bockenhauer, D., O'Kelly, I. et al. Potassium leak channels and the KCNK family of two-p-domain subunits . Nat Rev Neurosci 2, 175–184 (2001). https://doi.org/10.1038/35058574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35058574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing