Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitin and proteasomes

Themes and variations on ubiquitylation

Key Points

  • Ubiquitin is a highly conserved 76-amino-acid eukaryotic protein that is covalently attached to proteins as monomers or lysine-linked chains. This review provides an overview of the ubiquitin-conjugating system, highlighting recent insights into the enzymes involved in the addition and removal of ubiquitin from proteins and the consequences of this modification.

  • Ubiquitylation is the result of a highly specific multi-enzyme process, involving classes of enzymes known as E1s, E2s and E3s.There is a single known E1 (ubiquitin-activating enzyme) gene, several E2s (ubiquitin-conjugating enzymes) and a substantially greater number of potential E3s (ubiquitin protein ligases).

  • E2s are characterized by a conserved core domain. Differences among E2s both in the core domain and in amino- and carboxy-terminal extensions have the potential to determine the specificity of E3 interactions and their cellular locations.

  • Specificity in ubiquitylation is conferred primarily by E3s. There are two major classes of E3: HECT domain E3s and RING finger E3s. Crystal structures of members of both classes bound to E2 have now been solved.

  • HECT E3s include E6-AP, implicated in the HPV-E6-dependent degradation of p53, as well as a number of other proteins. Many HECT E3s have a amino-terminal C2 domain and several WW domains.

  • RING finger E3s include single subunit E3s, such as Mdm2 and c-Cbl as well as multisubunit E3s. The latter share the common feature of having a cullin family member as a component of the active complex.

  • Ubiquitylation is reversible. Removal of ubiquitin from proteins, disassembly of multi-ubiquitin chains, and processing of ubiquitin precursors to mature forms are among the jobs carried out by de-ubiquitylating enzymes.

  • Modification with ubiquitin is classically associated with protein degradation by targeting to proteasomes. However, ubiquitin has other cellular roles not obviously associated with proteasomal degradation and it is also evident that the types of ubiquitin linkages formed may influence protein fate.

Abstract

Ubiquitylation ? the conjugation of proteins with a small protein called ubiquitin ? touches upon all aspects of eukaryotic biology, and its defective regulation is manifest in diseases that range from developmental abnormalities and autoimmunity to neurodegenerative diseases and cancer. A few years ago, we could only have dreamt of the complex arsenal of enzymes dedicated to ubiquitylation. Why has nature come up with so many ways of doing what seems to be such a simple job?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ubiquitylation pathway.
Figure 2: The many functions of de-ubiquitylating enzymes.
Figure 3: E2?E3 interactions.
Figure 4: Representative E3?substrate interactions
Figure 5: Different functions for different ubiquitin linkages.

Similar content being viewed by others

References

  1. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94?102 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Loeb, K. R. & Haas, A. L. Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern. Mol. Cell. Biol. 14, 8408?8419 ( 1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335?342 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Yeh, E. T., Gong, L. & Kamitani, T. Ubiquitin-like proteins: new wines in new bottles. Gene 248, 1?14 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409?419 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Huibregtse, J. M., Scheffner, M., Beaudenon, S. & Howley, P. M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl Acad. Sci. USA. 92, 2563 ?2567 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549?552 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394?401 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  9. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell. Dev. Biol. 11, 141?148 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Handley-Gearhart, P. M., Stephen, A. G., Trausch-Azar, J. S., Ciechanover, A. & Schwartz, A. L. Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J. Biol. Chem. 269, 33171?33178 (1994).

    CAS  PubMed  Google Scholar 

  11. Nagai, Y. et al. Ubiquitin-activating enzyme, E1, is phosphorylated in mammalian cells by the protein kinase Cdc2. J. Cell Sci. 108, 2145?2152 (1995).

    CAS  PubMed  Google Scholar 

  12. Grenfell, S. J., Trausch-Azar, J. S., Handley-Gearhart, P. M., Ciechanover, A. & Schwartz, A. L. Nuclear localization of the ubiquitin-activating enzyme, E1, is cell-cycle-dependent. Biochem. J. 300, 701?708 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43?55 (1984).This is a landmark study that provided the first evidence of a role for the ubiquitin-conjugating system in cellular function.

    Article  CAS  PubMed  Google Scholar 

  14. Mathias, N., Steussy, C. N. & Goebl, M. G. An essential domain within Cdc34p is required for binding to a complex containing Cdc4p and Cdc53p in Saccharomyces cerevisiae . J. Biol. Chem. 273, 4040? 4045 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Xie, Y. & Varshavsky, A. The E2?E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18, 6832 ?6844 (1999).This study establishes a role for the RING finger in the activity of the N-end rule E3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176?179 (1993). This study describes Ubc6 and provided the first suggestion of a linkage between the ubiquitin-conjugating system and the degradation of proteins from the endoplasmic reticulum.

    Article  CAS  PubMed  Google Scholar 

  17. Hauser, H. P., Bardroff, M., Pyrowolakis, G. & Jentsch, S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol. 141, 1415?1422 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gonen, H. et al. Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IκBα . J. Biol. Chem. 274, 14823? 14830 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Schwarz, S. E., Rosa, J. L. & Scheffner, M. Characterization of human hect domain family members and their interaction with UbcH5 and UbcH7. J. Biol. Chem. 273, 12148?12154 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Haas, A. L. & Siepmann, T. J. Pathways of ubiquitin conjugation . FASEB J. 11, 1257?1268 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, L. et al. Structure of an E6AP?UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321?1326 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl?UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533? 539 (2000).References 21 and 22 describe the crystal structures of a HECT domain and a RING finger protein with an E2.

    Article  CAS  PubMed  Google Scholar 

  23. Nuber, U. & Scheffner, M. Identification of determinants in E2 ubiquitin-conjugating enzymes required for hect E3 ubiquitin-protein ligase interaction. J. Biol. Chem. 274, 7576?7582 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cook, W. J., Martin, P. D., Edwards, B. F., Yamazaki, R. K. & Chau, V. Crystal structure of a class I ubiquitin conjugating enzyme (Ubc7) from Saccharomyces cerevisiae at 2.9 angstroms resolution. Biochemistry 36, 1621? 1627 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495? 505 (1993).This is a seminal paper describing the characterization of E6-AP, the first described member of the HECT domain family of E3s.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, S., Talis, A. L. & Howley, P. M. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274 , 18785?18792 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet. 15, 70?73 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Kay, B. K., Williamson, M. P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231?241 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  29. Rotin, D., Staub, O. & Haguenauer-Tsapis, R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. J. Membr. Biol. 176, 1?17 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  30. Plant, P. J. et al. Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473?1484 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102 , 577?586 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Orian, A. et al. Ubiquitin-mediated processing of NF-κB transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J. Biol. Chem. 270, 21707?21714 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell. Dev. Biol. 14, 19? 57 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kamynina, E., Debonneville, C., Bens, M., Vandewalle, A. & Staub, O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J. 15, 204?214 ( 2001).

    Article  CAS  PubMed  Google Scholar 

  35. Freemont, P. S. RING for destruction? Curr. Biol. 10, R84 ?R87 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657? 661 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Ohta, T., Michel, J. J., Schottelius, A. J. & Xiong, Y. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3, 535?541 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Tan, P. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3, 527?533 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284, 662?665 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Seol, J. H. et al. Cdc53/cullin and the essential hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme cdc34. Genes Dev. 13, 1614?1626 (1999).References 36 40 all describe the characterization of a small RING finger protein as an integral component of SCF E3s.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364?11369 (1999). This study suggests a general role for RING fingers in ubiquitylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945?8951 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Honda, R. & Yasuda, H. Activity of MDM2, a ubiquitin ligase, toward p53 or itself is dependent on the RING finger domain of the ligase . Oncogene 19, 1473?1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor . J. Biol. Chem. 274, 22151? 22154 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2- dependent ubiquitin-protein ligase. Science 286 , 309?312 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707?31712 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Hu, G. & Fearon, E. R. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol. Cell. Biol. 19 , 724?732 (1999). References 42 47 demonstrate a role for the RING finger in a variety of known and suspected E3s.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zachariae, W. et al. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279, 1216?1219 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  49. Brzovic, P. S., Meza, J., King, M. C. & Klevit, R. E. The cancer-predisposing mutation C61G disrupts homodimer formation in the NH2-terminal BRCA1 RING finger domain. J. Biol. Chem. 273, 7795? 7799 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874?877 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  51. Hwang, H. K. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7 . J. Biol. Chem. 275, 26661? 26664 (2000).

    Google Scholar 

  52. Shimura, H. et al. Familial Parkinson's disease gene product, Parkin, in a ubiquitin-protein ligase. Nature Genet. 25, 302? 305 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y. et al. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1 . Proc. Natl Acad. Sci. USA 97, 13354? 13359 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Leverson, J. D. et al. The APC11 RING-H2 finger mediates E2-dependent ubiquitination . Mol. Biol. Cell 11, 2315? 2325 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol. 15, 435?467 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  56. Page, A. M. & Hieter, P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68, 583?609 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Tyers, M. & Jorgensen, P. Proteolysis and the cell cycle: with this RING I do thee destroy. Curr. Opin. Genet. Dev. 10, 54?64 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86 , 263?274 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P. M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751? 756 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Kaiser, P., Flick, K., Wittenberg, C. & Reed, S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCFMet30-mediated inactivation of the transcription factor Met4. Cell 102, 303?314 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  61. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822?1833 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Iwai, K. et al. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl Acad. Sci. USA 96, 12436?12441 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423?427 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  64. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733?25741 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  65. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von hippel-lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA 97, 10430?10435 (2000).References 61?65 establish the VHL?CBC complex as an E3 and show that HIF1α is a substrate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kamura, T. et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872? 3881 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Chung, C. H. & Baek, S. H. Deubiquitinating enzymes: their diversity and emerging roles. Biochem. Biophys. Res. Commun. 266, 633?640 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Papa, F. R. & Hochstrasser, M. The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene . Nature 366, 313?319 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737?740 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635? 644 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265?1273 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645? 653 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Bailly, V., Lauder, S., Prakash, S. & Prakash, L. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360?23365 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Ulrich, H. D. & Jentsch, S. Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388?3397 ( 2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Spence, J. et al. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67? 76 (2000).This is provocative study that demonstrates a role for K63-linked multi-ubiquitin chains in regulating translation.

    Article  CAS  PubMed  Google Scholar 

  76. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351?361 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Chau, V. et al. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 1576? 1583 (1989).

    Article  CAS  PubMed  Google Scholar 

  78. Baldi, L., Brown, K., Franzoso, G. & Siebenlist, U. Critical role for lysines 21 and 22 in signal-induced, ubiquitin- mediated proteolysis of IκBα. J. Biol. Chem. 271, 376 ?379 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Hou, D., Cenciarelli, C., Jensen, J. P., Nguyen, H. B. & Weissman, A. M. Activation-dependent ubiquitination a T cell antigen receptor subunit on multiple intracellular lysines. J. Biol. Chem. 269, 14244?14247 (1994).

    CAS  PubMed  Google Scholar 

  80. Treier, M., Staszewski, L. M. & Bohmann, D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787?798 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17, 5964? 5973 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Sheaff, R. J. et al. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell 5, 403?410 (2000).This study provides strong evidence for ubiquitin-independent proteasomal degradation of a protein that is known to ubiquitylated.

    Article  CAS  PubMed  Google Scholar 

  83. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16, 6020?6028 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507?513 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Unger, T. et al. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18, 3205? 3212 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Shieh, S. Y., Taya, Y. & Prives, C. DNA damage-inducible phosphorylation of p53 at N-terminal sites including a novel site, Ser20, requires tetramerization. EMBO J. 18, 1815?1823 ( 1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Lohrum, M. A., Ashcroft, M., Kubbutat, M. H. & Vousden, K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179?181 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Weber, J. D. et al. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell. Biol. 20, 2517?2528 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Midgley, C. A. et al. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene 19, 2312?2323 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  90. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22?27 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Jackson, M. W. & Berberich, S. J. MdmX protects p53 from Mdm2-mediated degradation. Mol. Cell. Biol. 20, 1001?1007 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Sharp, D. A., Kratowicz, S. A., Sank, M. J. & George, D. L. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274, 38189?38196 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Tanimura, S. et al. MDM2 interacts with MDMX through their RING finger domains . FEBS Lett. 447, 5?9 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Buschmann, T., Fuchs, S. Y., Lee, C.-G., Pan, Z.-Q. & Ronai, Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101, 753?762 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Balint, E., Bates, S. & Vousden, K. H. Mdm2 binds p73α without targeting degradation . Oncogene 18, 3923?3929 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Dobbelstein, M., Wienzek, S., Konig, C. & Roth, J. Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 18, 2101?2106 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Zeng, X. et al. MDM2 suppresses p73 function without promoting p73 degradation . Mol. Cell. Biol. 19, 3257? 3266 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Lam, Y. A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl Acad. Sci. USA. 97, 9902?9906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Morimoto, M., Nishida, T., Honda, R. & Yasuda, H. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCFskp2 toward p27kip1. Biochem. Biophys. Res. Commun. 270, 1093?1096 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  100. Osaka, F. et al. Covalent modifier NEDD8 is essential for SCF ubiquitin-ligase in fission yeast. EMBO J. 19, 3475? 3484 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Podust, V. N. et al. A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl Acad. Sci. USA 97, 4579?4584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Read, M. A. et al. Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell. Biol. 20 , 2326?2333 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Wada, H., Yeh, E. T. & Kamitani, T. A dominant-negative UBC12 mutant sequesters NEDD8 and inhibits NEDD8 conjugation in vivo. J. Biol. Chem. 275, 17008?17015 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Wu, K., Chen, A. & Pan, Z. Q. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem. 275, 32317?32324 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  105. Liakopoulos, D., Doenges, G., Matuschewski, K. & Jentsch, S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 17, 2208?2214 ( 1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Liakopoulos, D., Busgen, T., Brychzy, A., Jentsch, S. & Pause, A. Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. Proc. Natl Acad. Sci. USA 96, 5510?5515 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gmachl, M., Gieffers, C., Podtelejnikov, A. V., Mann, M. & Peters, J. M. The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proc. Natl Acad. Sci. USA 97, 8973 ?8978 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to the members of my laboratory for countless invaluable discussions. My apologies to colleagues whose important contributions to the field have been cited only indirectly because of space limitations.

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

Ubiquitin

UCRP

RUB1

Nedd8

SUMO-1

Apg12

ubiquitin domain

HECT domain

RING finger

E1

Ubc9

Ubc12

BRUCE

Ubc7

UBCH7

E6-AP

c-Cbl

Ubc3

p53

HHR23A

Angelman syndrome

WW domains

C2 domain

Nedd4

Rsp5

SPT23

MGA2

NF-κB

Liddle syndrome

Rbx1

Skp1

Cul1

BRCA1

familial forms of breast and ovarian cancer

Mdm2

parkin

IBR

juvenile Parkinson's disease

BIR domain

von Hippel Lindau

Cul-2

elongin B

elongin C

Apc11

F Box

βTRCP

β-catenin

CD4

von Hippel?Lindau

HIF1α

SOCS

Ubc13

Mms2

Ubc2

Rad5

Rad18

L28

TRAF6

S5A

FURTHER INFORMATION

Weissman lab

Nottingham University ubiquitin site

Wilkinson lab

Ubiquitin and the biology of the cell

Ubiquitin and the biology of the cell

Cbl

CDCrel-1

VEGF

ENCYCLOPEDIA OF LIFE SCIENCES

Ubiquitin pathway

Proteins: postsynthetic modifications

Glossary

RUB1

(Nedd8 in metazoans). A ubiquitin-like (UBL) protein that is activated by its own E1- and E2-like molecules and modifies cullin family members.

HECT

Stands for homologous to E6-AP carboxyl terminus. The HECT domain is a 350-amino-acid domain, highly conserved among a family of E3 enzymes.

RING FINGER

Defined structurally by two interleaved metal-coordinating sites. The consensus sequence for the RING finger is: CX2CX(9?39)CX(1?3)HX(2?3)C/HX2CX(4?48)CX2C. The cysteines and histidines represent metal-binding sites with the first, second, fifth and sixth of these binding one zinc ion and the third, fourth, seventh and eighth binding the second.

BIR REPEAT

(Baculovirus inhibitor of apoptosis repeat). Cysteine-based motif of 65 amino acids. Inhibitors of apoptosis (IAPs) contain several BIR domains.

c-CBL

Multifunctional protein that modulates signalling through tyrosine-kinase-containing growth factor receptors and tyrosine-kinase-coupled receptors. Has RING-finger-dependent E3 activity.

WW DOMAIN

Protein interaction domain found in the amino-terminal halves of many HECT E3s, and also in other proteins. Characterized by a pair of tryptophans 20?22 amino acids apart, and an invariant proline within a region of 40 amino acids. WW domains interact with proline-rich regions, including those with phosphoserine or phosphothreonine.

F-BOX

A conserved 50-residue region found in proteins that associate with Skp1 and potentially form the SCF E3s. There are over a hundred distinct members of this family.

CULLIN FAMILY

Proteins with homology to Cul1, which was first shown to be involved in cell-cycle exit in Caenorhabditis elegans.

IκBα

Inhibitory subunit of the NF-κB transcription factor. It is phosphorylated, ubiquitylated and degraded in response to stimuli that activate NF-κB.

SOCS BOX

Suppressor of cytokine signalling box first identified in an inhibitor of Jak family kinases.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissman, A. Themes and variations on ubiquitylation . Nat Rev Mol Cell Biol 2, 169–178 (2001). https://doi.org/10.1038/35056563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35056563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing