Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis in neurodegenerative disorders

Abstract

Neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, stroke, and amyotrophic lateral sclerosis. The identification of specific genetic and environmental factors responsible for these diseases has bolstered evidence for a shared pathway of neuronal death — apoptosis — involving oxidative stress, perturbed calcium homeostasis, mitochondrial dysfunction and activation of cysteine proteases called caspases. These death cascades are counteracted by survival signals, which suppress oxyradicals and stabilize calcium homeostasis and mitochondrial function. With the identification of mechanisms that either promote or prevent neuronal apoptosis come new approaches for preventing and treating neurodegenerative disorders.

Key Points

  • Neuronal death underlies the symptoms of many human neurological disorders, including Alzheimer's, Parkinson's and Huntington's diseases, stroke, and amyotrophic lateral sclerosis.

  • Many signals can initiate apoptosis in neurons, including lack of neurotrophic factor support, overactivation of glutamate receptors (leading to calcium influx), increased oxidative stress and metabolic stress.

  • Mitochondrial changes are pivotal in the cell death decision in many cases. Mitochondria in cells undergoing apoptosis show increased oxyradical production, opening of pores in their membranes and release of cytochrome c.

  • The Bcl-2 family of proteins includes both anti-apoptotic (for example, Bcl-2) and pro-apoptotic (for example, Bax) members.

  • Overexpression of Bcl-2 in cell cultures and in transgenic mice increases resistance of neurons to death induced by excitotoxic, metabolic and oxidative insults. Conversely, neurons lacking Bax are protected against apoptosis.

  • Further mechanisms that can regulate the early stages of apoptosis in neurons involve caspases (evolutionarily conserved cysteine proteases central to apoptosis of many cell types), Par-4 and telomerase.

  • Neurotrophic factors can protect neurons against apoptosis by activating receptors linked to production of cell survival-promoting proteins (such as antioxidant enzymes, Bcl-2 family members and proteins involved in calcium homeostasis) through kinase cascades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological and biochemical features of apoptosis.
Figure 2: Brain regions in which neurodegenerative conditions are typified by selective apoptosis of neurons.
Figure 3: Roles for altered synaptic signalling in neurodegenerative disorders.
Figure 4: Brain tissue section from the hippocampus of a patient who died with Alzheimer's disease.
Figure 5: Mechanisms underlying the pro-apoptotic actions of altered APP processing and presenilin-1 mutations.

Similar content being viewed by others

References

  1. Wyllie, A. H. Apoptosis and carcinogenesis. Eur. J. Cell Biol. 73 , 189–197 (1997). Provides a historical overview of the morphological and biochemical features of apoptosis.

    CAS  PubMed  Google Scholar 

  2. Oppenheim, R. W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  3. Mattson, M. P. & Lindvall, O. in The Aging Brain Vol. 2 (eds Mattson, M. P. & Geddes, J. W.) 299– 345 (JAI Press, Greenwich, Connecticut, 1997).

    Book  Google Scholar 

  4. McKay, S. E., Purcell, A. L. & Carew, T. J. Regulation of synaptic function by neurotrophic factors in vertebrates and invertebrates: implications for development and learning . Learn. Mem. 6, 193–215 (1999).

    CAS  PubMed  Google Scholar 

  5. Ankarcrona, M. et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961–973 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Glazner, G. W., Chan, S. L., Lu, C. & Mattson, M. P. Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choi, D. W. Excitotoxic cell death. J. Neurobiol. 23, 1261–1276 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Wong, P. C., Rothstein, J. D. & Price, D. L. The genetic and molecular mechanisms of motor neuron disease. Curr. Opin. Neurobiol. 8, 791– 799 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sastry, P. S. & Rao, K. S. Apoptosis and the nervous system . J. Neurochem. 74, 1–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Mattson, M. P. Modification of ion homeostasis by lipid peroxidation: roles in neuronal degeneration and adaptive plasticity. Trends Neurosci. 21, 53–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Beal, M. F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Duan, W., Zhang, Z., Gash, D. M. & Mattson, M. P. Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson's disease. Ann. Neurol. 46, 587–597 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619 –642 (1998).Detailed review of the role of mitochondria in apoptosis.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto, S., Friberg, H., Ferrand-Drake, M. & Wieloch, T. Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 19, 736– 741 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Pellegrini, M. & Strasser, A. A portrait of the Bcl-2 protein family: life, death, and the whole picture. J. Clin. Immunol. 19, 365–377 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Martinou, J. C. et al. Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030 ( 1994).Direct evidence that Bcl-2 can prevent death of neurons in vivo during development and in an experimental stroke model.

    Article  CAS  PubMed  Google Scholar 

  17. Guo, Q. et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid β-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J. & Snider, W. D. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18, 1428–1439 (1998).Direct evidence that the pro-apoptotic protein Bax is essential in natural cell death during development of the nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 28, 1309–1312 ( 1998).

    Article  Google Scholar 

  20. Chan, S. L. & Mattson, M. P. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J. Neurosci. Res. 58, 167–190 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  21. Raoul, C., Pettmann, B. & Henderson, C. E. Active killing of neurons during development and following stress: a role for p75(NTR) and Fas? Curr. Opin. Neurobiol. 10, 111–117 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  22. Nagata, S. Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Guo, Q. et al. Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nature Med. 4, 957–962 (1998).Initial description and characterization of the involvement of Par-4 in neuronal apoptosis in experimental models of developmental cell death and Alzheimer's disease.

    Article  CAS  PubMed  Google Scholar 

  24. Mattson, M. P., Duan, W., Chan, S. L. & Camandola, S. Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J. Mol. Neurosci. 13, 17–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J. P. Studies of the molecular mechanisms in the regulation of telomerase activity . FASEB J. 13, 2091–2104 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Fu, W., Killen, M., Pandita, T. & Mattson, M. P. The catalytic subunit of telomerase is expressed in developing brain neurons and serves a cell survival-promoting function. J. Mol. Neurosci. 14, 3–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Fu, W., Begley, J. G., Killen, M. W. & Mattson, M. P. Anti-apoptotic role of telomerase in pheochromocytoma cells. J. Biol. Chem. 274, 7264–7271 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Tamatani, M., Ogawa, S., Nunez, G. & Tohyama, M. Growth factors prevent changes in Bcl-2 and Bax expression and neuronal apoptosis induced by nitric oxide. Cell Death Differ. 5, 911 –919 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hagg, T. & Varon, S. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo . Proc. Natl Acad. Sci. USA 90, 6315 –6319 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Middleton, G. et al. Cytokine-induced nuclear factor kappa B activation promotes the survival of developing neurons. J. Cell Biol. 148 , 325–332 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mattson, M. P. & Camandola, S. NF-κB in neurodegenerative disorders. J. Clin. Invest. 61 , 134–139 (2000).

    Google Scholar 

  32. Yu, Z. F., Zhou, D., Bruce-Keller, A. J., Kindy, M. S. & Mattson, M. P. Lack of the p50 subunit of NF-κB increases the vulnerability of hippocampal neurons to excitotoxic injury. J. Neurosci. 19, 8856–8865 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Aschner, M., Allen, J. W., Kimelberg, H. K., LoPachin, R. M. & Streit, W. J. Glial cells in neurotoxicity development. Annu. Rev. Pharmacol. Toxicol. 39, 151–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, Z. F. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res. 15, 830–839 (1999).

    Article  Google Scholar 

  35. Lee, J., Duan, W., Long, J. M., Ingram, D. K. & Mattson, M. P. Dietary restriction increases survival of newly-generated neural cells and induces BDNF expression in the dentate gyrus of rats. J. Mol. Neurosci. (in the press).

  36. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling . Nature Rev. Mol. Cell Biol. 1, 11– 21 (2000). [ Contents page]

    Article  CAS  Google Scholar 

  37. Yano, S., Tokumitsu, H. & Soderling, T. R. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396, 584–587 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Hu, S. C., Chrivia, J. & Ghosh, A. Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22, 799– 808 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa, K. et al. The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. J. Neurosci. 17, 8178– 8186 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Furukawa, K., Barger, S. W., Blalock, E. M. & Mattson, M. P. Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein. Nature 379, 74–78 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Guenette, S. Y, & Tanzi, R. E. Progress toward valid transgenic mouse models for Alzheimer's disease. Neurobiol. Aging 20, 201–211 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  42. Sathasivam, K. et al. Transgenic models of Huntington's disease. Philos. Trans. R. Soc. Lond. B 354, 963–969 (1999).

    Article  CAS  Google Scholar 

  43. Borchelt, D. R., Wong, P. C., Sisodia, S. S. & Price, D. L. Transgenic mouse models of Alzheimer's disease and amyotrophic lateral sclerosis . Brain Pathol. 8, 735– 757 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Cummings, J. L., Vinters, H. V., Cole, G. M. & Khachaturian, Z. S. Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51, S2– S17 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Haass, C. & De Strooper, B. The presenilins in Alzheimer's disease — proteolysis holds the key. Science 286, 916–919 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Su, J. H., Anderson, A. J., Cummings, B. & Cotman, C. W. Immunocytochemical evidence for apoptosis in Alzheimer's disease. Neuroreport 5, 2529–2533 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Masliah, E., Mallory, M., Alford, M., Tanaka, S. & Hansen, L. A. Caspase dependent DNA fragmentation might be associated with excitotoxicity in Alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 1041–1052 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  48. Suzuki, T. et al. Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 63, 246–254 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  49. Loo, D., Copani, A., Pike, C., Whittemore, E., Walencewicz, A. & Cotman, C. W. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA 90, 7951 –7955 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weidemann, A. et al. Proteolytic processing of the Alzheimer's disease amyloid precursor protein within its cytoplasmic domain by caspase-like proteases . J. Biol. Chem. 274, 5823– 5829 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, Y., McPhie, D. L., Hirschberg, J. & Neve, R. L. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S–M checkpoint and causes apoptosis in neurons. J. Biol. Chem. 275, 8929–8935 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, D. C. et al. A second cytotoxic proteolytic peptide derived from amyloid precursor protein. Nature Med. 6, 397– 404 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, Q. et al. Neurotrophic factors (activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)) interrupt excitotoxic neurodegenerative cascades promoted by a presenilin-1 mutation. Proc. Natl Acad. Sci. USA 96, 4125–4130 ( 1999).Uses knock-in mice to identify the gain-of-function action of mutant presenilin-1 as a pro-apoptotic activity that results from perturbed cellular calcium homeostasis and can be suppressed by neurotrophic factors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mattson, M. P. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23 , 222–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Vito, P., Lacana, E. & d'Adamio, L. Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 271, 521–525 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  56. Jenner, P. & Olanow, C. W. Understanding cell death in Parkinson's disease. Ann. Neurol. 44, S72– S84 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Polymeropoulos, M. H. Autosomal dominant Parkinson's disease and alpha-synuclein. Ann. Neurol. 44, S63–S64 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  58. Klevenyi, P. et al. Transgenic mice expressing a dominant negative mutant interleukin-1β converting enzyme show resistance to MPTP neurotoxicity. Neuroreport 10, 635–638 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  59. Gash, D. M. et al. Functional recovery in parkinsonian monkeys treated with GDNF . Nature 380, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. El-Agnaf, O. M. et al. Aggregates from mutant and wild-type α-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of β-sheet and amyloid-like filaments. FEBS Lett. 440, 71–75 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  61. Brandt, J et al. Trinucleotide repeat length and clinical progression in Huntington's disease. Neurology 46, 527– 531 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Sawa, A. et al. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Nature Med. 5, 1194–1198 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez, I. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623– 633 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Wellington, C. L. et al. Inhibiting caspase cleavage of huntingtin reduces toxicity and aggregate formation in neuronal and non-neuronal cells. J. Biol. Chem. 275, 19831–19838 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Leavitt, B. R., Wellington, C. I. & Hayden, M. R. Recent insights into the molecular pathogenesis of Huntington disease. Semin. Neurol. 19, 385 –395 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Senut, M. C., Suhr, S. T., Kaspar, B. & Gage, F. H. Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain. J. Neurosci. 20, 219–229 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim, M. et al. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J. Neurosci. 19, 964–973 (1999).Provides insight into the pathogenic action of polyglutamine-repeat huntingtin in neuronal apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rigamonti, D. et al. Wild-type huntingtin protects from apoptosis upstream of caspase-3 . J. Neurosci. 20, 3705– 3713 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cookson, M. R. & Shaw, P. J. Oxidative stress and motor neurone disease. Brain Pathol. 9, 165–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, R. G. et al. Autoimmunity and ALS. Neurology 47, S40–S45 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Gurney, M. E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Wong, P. C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria . Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Kruman, I., Pedersen, W. A. & Mattson, M. P. ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanism involving increased oxidative stress and perturbed calcium homeostasis. Exp. Neurol. 160, 28–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Martin, L. J., Price, A. C., Kaiser, A., Shaikh, A. Y. & Liu, Z. Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death. Int. J. Mol. Med. 5, 3–13 ( 2000).

    CAS  PubMed  Google Scholar 

  76. Li, M. et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335– 339 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis . Science 277, 559–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view . Trends Neurosci. 22, 391– 397 (1999).Details molecular and cellular mechanisms in the neuronal death in ischaemic stroke.

    Article  CAS  PubMed  Google Scholar 

  79. Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–568 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Yu, Z. et al. Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal death. J. Mol. Neurosci. (in the press).

  81. Bonventre, J. V. et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390, 622–625 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Schielke, G. P., Yang, G. Y., Shivers, B. D. & Betz, A. L. Reduced ischemic brain injury in interleukin-1β converting enzyme-deficient mice. J. Cereb. Blood Flow Metab. 18, 180 –185 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Hara, H. et al. Inhibition of interleukin 1 converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc. Natl Acad. Sci. USA 94, 2007–2012 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murakami, K. et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205–213 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keller, J. N. et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Clark, R. S. et al. Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J. 13, 813–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Fox, G. B., Fan, L., Levasseur, R. A. & Faden, A. I. Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J. Neurotrauma 15, 599–614 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  88. Napieralski, J. A., Raghupathi, R. & McIntosh, T. K. The tumor-suppressor gene, p53, is induced in injured brain regions following experimental traumatic brain injury. Mol. Brain Res. 71, 78–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Beer, R. et al. Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J. Cereb. Blood Flow Metab. 20, 669–677 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Yakovlev, A. G. et al. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17, 7415–7424 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fink, K. B. et al. Reduction of post-traumatic brain injury and free radical production by inhibition of the caspase-1 cascade. Neuroscience 94, 1213–1218 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  92. Sinson, G., Perri, B. R., Trojanowski, J. Q., Flamm, E. S. & McIntosh, T. K. Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J. Neurosurg. 86, 511–518 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Albensi, B. C., Sullivan, P. G., Thompson, M. B., Scheff, S. W. & Mattson, M. P. Cyclosporine ameliorates traumatic brain injury-induced alterations of hippocampal synaptic plasticity. Exp. Neurol. 162, 385–389 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Emery, E. et al. Apoptosis after traumatic human spinal cord injury. J. Neurosurg. 89, 911–920 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Wada, S. et al. Apoptosis following spinal cord injury in rats and preventative effect of N-methyl-d-aspartate receptor antagonist. J. Neurosurg. 91, 98–104 ( 1999).

    CAS  PubMed  Google Scholar 

  96. Springer, J. E., Azbill, R. D. & Knapp, P. E. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nature Med. 5, 943–946 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. & Beattie, M. S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Med. 3, 73–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Ay, H., Ay, I., Koroshetz, W. J. & Finklestein, S. P. Potential usefulness of basic fibroblast growth factor as a treatment for stroke. Cerebrovasc. Dis. 9, 131–135 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. The BDNF Study Group. A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 52, 1427–1433 ( 1999).

  100. Borasio, G. D. et al. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 51, 583–586 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  101. Grundman, M. Vitamin E and Alzheimer disease: the basis for additional clinical trials . Am. J. Clin. Nutr. 71, 630S– 636S (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Logroscino, G. et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based, case-control study. Ann. Neurol. 39, 89–94 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Duan, W. & Mattson, M. P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J. Neurosci. Res. 57, 195–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Ohlsson, A. L. & Johansson, B. B. Environment influences functional outcome of cerebral infarction in rats. Stroke 26, 644–649 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  105. Mattson, M. P. & Duan, W. Apoptotic biochemical cascades in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J. Neurosci. Res. 58, 152– 166 (1999).Reviews the evidence for and implications of apoptosis-related mechanisms in synaptic remodelling and neuronal cell death.

    Article  CAS  PubMed  Google Scholar 

  106. Ivins, K. J., Bui, E. T. & Cotman, C. W. Beta-amyloid induces local neurite degeneration in cultured hippocampal neurons: evidence for neuritic apoptosis. Neurobiol. Dis. 5, 365–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Albensi, B. C. & Mattson, M. P. Evidence for the nvolvement TNF and NF-κB in hippocampal synaptic plasticity. Synapse 35, 151–159 ( 2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Bcl-2

Bcl-xL

Bax

Bad

caspase-8

caspase-3

BDNF

NGF

bFGF

TNF-α

CNTF

LIF

CREB

NCKAP1

APP

presenilins 1 and 2

GDNF

IGF-1

ENCYCLOPEDIA OF LIFE SCIENCES

Alzheimer disease

Apoptosis: molecular mechanisms

Glossary

SYNAPTOGENESIS

The process of formation of synapses, the sites where neurons communicate through release of neurotransmitters from the presynaptic terminal and activation of receptors on the postsynaptic neuron.

NEUROTROPHIC FACTORS

Proteins produced by neurons and glial cells that promote neuron survival and growth.

METABOLIC STRESS

Conditions in which levels of glucose, oxygen and other molecules required for ATP (energy) production are decreased.

LEUCINE ZIPPER

A leucine-rich domain within a protein that binds to other proteins with a similar domain.

MICROGLIA

Phagocytic immune cells in the brain that engulf and remove cells that have undergone apoptosis.

EXCITOTOXINS

Compounds such as glutamate, kainic acid and N-methyl-d-aspartate that can kill neurons by activating excitatory amino-acid (glutamate) receptors.

LIMBIC STRUCTURES

Brain structures such as the hippocampus, amygdala and septum that function in learning and memory, and in emotions.

NEURITES

Generic name for processes (axons and dendrites) elaborated from neuronal cell bodies.

SYNAPTOSOME

A structure consisting of pre- and postsynaptic terminals prepared from homogenized brain tissue with cellular fractionation techniques.

SUBSTANTIA NIGRA

A part of the midbrain that contains dopamine-producing neurons whose axons innervate the striatum and thereby control body movements.

MITOCHONDRIAL COMPLEX I

A group of proteins located at the inner mitochondrial membrane that function very early in the electron transport chain.

LEWY BODIES

Eosinophilic, cytoplasmic neuronal inclusions that contain aggregates of the proteins α-synuclein and ubiquitin.

LYMPHOBLASTS

Bone-marrow-derived cells that give rise to lymphocytes.

INTRANEURONAL INCLUSIONS

Aggregates of proteins that accumulate in neurons within the cytoplasm or nucleus.

INFARCT

Brain tissue surrounding the site of a stroke in which cells die.

ISCHAEMIC PENUMBRA

A region of tissue surrounding the necrotic core of an ischaemic infarct in which neurons die primarily by apoptosis.

OLIGODENDROCYTES

A specific type of glial cell, which forms myelin membranes that insulate axons of neurons and thereby increase impulse conduction velocity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1, 120–130 (2000). https://doi.org/10.1038/35040009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040009

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing