Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis in the nervous system

Abstract

Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of apoptosis in sympathetic neurons by trophic factor withdrawal.
Figure 2: Neuronal survival pathways induced by the binding of NGF to its receptor TrkA.
Figure 3: Abnormal protein structures and the pathogenesis of neurodegenerative disease.
Figure 4: Cellular pathways of amyloid-β protein neurotoxicity in Alzheimer's disease.
Figure 5: SOD-1 mutations activate cell death pathways in familial amyotrophic lateral sclerosis.

Similar content being viewed by others

References

  1. Hamburger, V. & Levi-Montalcini, R. J. Exp. Zool. 111, 457–502 (1949).

    Article  CAS  PubMed  Google Scholar 

  2. Purves, D. Body and Brain: A Trophic Theory of Neural Connections (Harvard Press, Cambridge, Massachusetts, 1988).

    Google Scholar 

  3. Martin, D. P. et al. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell Biol. 106, 829–844 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  4. Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans : past, present and future. Trends Genet. 14, 410–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Gagliardini, V. et al. Prevention of vertebrate neuronal death by the crmA gene. Science 263, 826– 828 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Merry, D. E. & Korsmeyer, S. J. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245– 267 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Garcia, I., Martinou, I., Tsujimoto, Y. & Martinou, J. C. Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene. Science 258, 302– 304 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  9. Dubois-Dauphin, M., Frankowski, H., Tsujimoto, Y., Huarte, J. & Martinou, J. C. Neonatal motoneurons overexpressing the bcl-2 protooncogene in transgenic mice are protected from axotomy-induced cell death. Proc. Natl Acad. Sci. USA 91, 3309–3313 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sagot, Y. et al. Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J. Neurosci. 15, 7727–7733 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Veis, D. J., Sorenson, C. M., Shutter, J. R. & Korsmeyer, S. J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Michaelidis, T. M. et al. Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development . Neuron 17, 75–89 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Garcia, M. et al. bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc. Natl Acad. Sci. USA 92, 4304–4308 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506 –1510 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401– 411 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3 . Cell 90, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Cryns, V. & Yuan, J. Proteases to die for. Genes Dev. 12, 1551–1570 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  19. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakagawa, T. et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Barbacid, M. Structural and functional properties of the TRK family of neurotrophin receptors . Ann. NY Acad. Sci. 766, 442– 458 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Fruman, D. A., Meyers, R. E. & Cantley, L. C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  26. Yao, R. & Cooper, G. M. Regulation of the Ras signaling pathway by GTPase-activating protein in PC12 cells. Oncogene 11, 1607–1614 (1995).

    CAS  PubMed  Google Scholar 

  27. Philpott, K. L., McCarthy, M. J., Klippel, A. & Rubin, L. L. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J. Cell Biol. 139, 809–815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, E. et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285 –291 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Datta, S. R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Du, K. & Montminy, M. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273, 32377–32379 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A. & Ginty, D. D. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286, 2358–2361 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kane, L. P., Shapiro, V. S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science 286, 1358–1362 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Koike, T., Martin, D. P. & Johnson, E. M. Jr Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc. Natl Acad. Sci. USA 86, 6421 –6425 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Vaillant, A. R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146, 955–966 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Estus, S. et al. Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J. Cell Biol. 127, 1717–1727 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Ham, J. et al. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 14, 927– 939 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Imaizumi, K. et al. The cell death-promoting gene DP5, which interacts with the BCL2 family, is induced during neuronal apoptosis following exposure to amyloid beta protein. J. Biol. Chem. 274, 7975– 7981 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Putcha, G. V., Deshmukh, M. & Johnson, E. M. Jr BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases . J. Neurosci. 19, 7476– 7485 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Deshmukh, M. & Johnson, E. M. Jr Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 695–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Dechant, G. & Barde, Y. A. Signalling through the neurotrophin receptor p75NTR. Curr. Opin. Neurobiol. 7, 413–418 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Frade, J. M., Rodriguez-Tebar, A. & Barde, Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T. & Chao, M. V. Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716– 719 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Davey, F. & Davies, A. M. TrkB signalling inhibits p75-mediated apoptosis induced by nerve growth factor in embryonic proprioceptive neurons . Curr. Biol. 8, 915–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y., Chopp, M., Jiang, N., Zhang, Z. G. & Zaloga, C. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26, 1252–1257; discussion 1257–1258 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Charriaut-Marlangue, C. et al. Apoptosis and necrosis after reversible focal ischemia: an in situ DNA fragmentation analysis. J. Cereb. Blood Flow Metab. 16, 186–194 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  52. Namura, S. et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci. 18, 3659–3668 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martin, L. J. et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull. 46, 281– 309 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Su, J. H., Anderson, A. J., Cummings, B. J. & Cotman, C. W. Immunohistochemcial evidence for apoptosis in Alzheimer's disease. Neuroreport 5, 2529–2533 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Troncoso, J. C., Sukhov, R. R., Kawas, C. H. & Koliatsos, V. E. In situ labeling of dying cortical neurons in normal aging and in Alzheimer's disease: correlations with senile plaques and disease progression. J. Neuropathol. Exp. Med. 55, 1134– 1142 (1996).

    Article  CAS  Google Scholar 

  56. Selkoe, D. J. Alzheimer's disease: genotypes, phenotypes and treatments. Science 275, 630–631 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  57. Yankner, B. A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron 16, 921–932 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  58. Geula, G. et al. Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nature Med. 4, 827– 831 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Behl, C., Davis, J. B., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Mattson, M. P., Tomaselli, K. J. & Rydel, R. E. Calcium-destablizing and neurodegenerative effect of aggregate beta-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  61. Loo, D. T. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. Natl Acad. Sci. USA 90 , 7951–7955 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yan, S. D. et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease. Nature 382, 685– 691 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest. 100, 2333–2340 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lorenzo, A. et al. Amyloid-β interacts with the amyloid precursor protein: a potential toxic mechansim in Alzheimer's disease. Nature Neurosci. 3, 460–464 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  65. Estus, S. et al. Aggegated amyloid-beta protein induces cortical neuronal apoptosis and concomitant 'apoptotic' pattern of gene induction. J. Neurosci. 17, 7736–7745 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Troy, C. M. et al. Caspase-2 mediates neuronal cell death induced by beta-amyloid . J. Neurosci. 20, 1386– 1392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Levy-Lahad, E. et al. Candidate gene for chromosome 1 familial Alzheimer's disease locus. Science 269, 973– 977 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Price, D. L., Tanzi, R. E., Borchelt, D. R. & Sisodia, S. S. Alzheimer's disease: genetic studies and transgenic models. Annu. Rev. Genet. 32, 461–493 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Scheuner, D. et al. Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nature Med. 2, 864–870 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  71. Wolfe, M. S. et al. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513–517 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Li, Y. M. et al. Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405, 689–694 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Mattson, M. P., Guo, Q., Furukawa, K. & Pedersen, W. A. Presenilins, the endoplasmic reticulum, and neuronal apoptosis in Alzheimer's disease . J. Neurochem. 70, 1–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Giulian, D. et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci. 16, 6021–6037 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tan, J. et al. Microglial activation resulting from CD40–CD40L interaction after beta-amyloid stimulation. Science 286, 2352–2355 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Brown, D. R., Schmidt, B. & Kretzschmer, H. A role of microglia and host prion protein in neurotoxicity of prion protein fragment. Nature 380, 345 –347 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Gonzalez-Scarano, F. B. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Ohagen, A. et al. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J. Virol. 73, 897– 906 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Scherzinger, E. et al. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Lunkes, A. M. Polyglutamines, nuclear inclusions and neurodegeneration. Nature Med. 3, 1201–1202 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  81. DiFiglia, M. et al. Aggregation of huntington in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Orr, H. T. & Zoghbi, H. Y. Reversing neurodegeneration: a promise unfolds. Cell 101, (2000 ).

  83. Davies, S. W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  84. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Klement, I. A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Sanchez, L. et al. Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623– 633 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Ona, V. O. et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 204–205, 207 (1999).

    Article  CAS  Google Scholar 

  88. Vonsattel, J. P. et al. Neuropathological classification of Huntington's diesease . J. Neuropathol. Exp. Neurol. 44, 559– 577 (1985).

    Article  CAS  PubMed  Google Scholar 

  89. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  90. Yamamoto, A., Lucas, J. J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Cleveland, D. W. From Charcot to SOD1: mechanisms of selective motor neuron death in ALS. Neuron 24, 515–520 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  93. Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis covert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl Acad. Sci. USA 92, 3024–3028 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pasinelli, P. et al. Caspase-1 is activated in neuronl cells and tissue with amyotrophic lateral sclerosis-associated mutations in copper-zinc superoxide dismutase . Proc. Natl Acad. Sci. USA 95, 15763– 15768 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kostic, V., Jackson-Lewis, V., de Bilbao, F., Dubois-Dauphin, M. & Przedborski, S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis . Science 277, 559–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Li, M., Ona, V. O., Guegan, C. & Chen, M. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288, 335–339 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Friedlander, R. M., Brown, R. H., Gagliardini, V., Wang, J. & Juan, J. Inhibition of ICE slows ALS in mice . Nature 388, 31 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Liu, X. H. et al. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic–ischemic brain damage. J. Cereb. Blood Flow Metab. 19, 1099–1108 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Lee, V. M. Y. & Trojanowski, J. Q. Neurodegenerative tauopathies: human disease and transgenic mouse models. Neuron 24, 507–510 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  101. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615– 622 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Greenberg, M. Moskowitz, M. Deshmukh and E. Johnson for critical readings of the manuscript. This work was supported by grants from the NIH (to B.Y. and J.Y), a grant from the American Heart Association (to J.Y.), a Zenith Award from the Alzheimer's Association (to B.Y.) and a NIH MRRC core grant.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Yankner, B. Apoptosis in the nervous system. Nature 407, 802–809 (2000). https://doi.org/10.1038/35037739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037739

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing