Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An SNP map of the human genome generated by reduced representation shotgun sequencing

Abstract

Most genomic variation is attributable to single nucleotide polymorphisms (SNPs), which therefore offer the highest resolution for tracking disease genes and population history1,2,3. It has been proposed that a dense map of 30,000–500,000 SNPs can be used to scan the human genome for haplotypes associated with common diseases4,5,6. Here we describe a simple but powerful method, called reduced representation shotgun (RRS) sequencing, for creating SNP maps. RRS re-samples specific subsets of the genome from several individuals, and compares the resulting sequences using a highly accurate SNP detection algorithm. The method can be extended by alignment to available genome sequence, increasing the yield of SNPs and providing map positions. These methods are being used by The SNP Consortium, an international collaboration of academic centres, pharmaceutical companies and a private foundation, to discover and release at least 300,000 human SNPs. We have discovered 47,172 human SNPs by RRS, and in total the Consortium has identified 148,459 SNPs. More broadly, RRS facilitates the rapid, inexpensive construction of SNP maps in biomedically and agriculturally important species. SNPs discovered by RRS also offer unique advantages for large-scale genotyping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of quality criteria on error rates.
Figure 2: Pilot project data analysis.

Similar content being viewed by others

References

  1. Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Collins, F. S., Guyer, M. S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hastbacka, J. et al. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nature Genet. 2, 204–211 (1992); erratum ibid. 2, 343 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139– 144 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Collins, A., Lonjou, C. & Morton, N. E. Genetic epidemiology of single-nucleotide polymorphisms. Proc. Natl Acad. Sci. USA 96, 15173– 15177 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weber, J. L. & Myers, E. W. Human whole-genome shotgun sequencing. Genome Res. 7, 401–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Ewing, B. & Green, P. Base-calling of automated sequencer traces using PHRED. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. Base-calling of automated sequencer traces using PHRED. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Gu, Z., Hillier, L. & Kwok, P. Y. Single nucleotide polymorphism hunting in cyberspace. Hum. Mutat. 12, 221–225 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Marth, G. T. et al. A general approach to single-nucleotide polymorphism discovery. Nature Genet. 23, 452– 456 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Buetow, K. H., Edmonson, M. N. & Cassidy, A. B. Reliable identification of large numbers of candidate SNPs from public EST data. Nature Genet. 21, 323–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, D. G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Li, W. H. & Sadler, L. A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mullikin, J. C. et al. An SNP map of human chromosome 22. Nature 407, 516–523 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Collins, F. S., Brooks, L. D. & Chakravarti, A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8, 1229–1231 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Landegren, U., Nilsson, M. & Kwok, P. Y. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8, 769 –776 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Cambien, F. et al. Sequence diversity in 36 candidate genes for cardiovascular disorders. Am. J. Hum. Genet. 65, 183– 191 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, W. -H. Molecular Evolution (Sinauer Associates, Canada, 1997 ).

    Google Scholar 

Download references

Acknowledgements

We are indebted to the staff of the Whitehead Institute/MIT Center for Genome Research Sequencing Center for high-throughput sequencing and to N. Stange-Thomann for contributions to library construction. We would like to thank B. Blumenstiel and R. Lane for library construction and SNP validation, and M. Molla, L. Friedland, J. Ireland and B. Gilman for informatics assistance. We appreciate helpful discussions with members of The SNP Consortium, as well as colleagues at the Whitehead/MIT Genome Center. D.A. is a recipient of a Howard Hughes Medical Institute Postdoctoral Fellowship for Physicians. C.R.C. is supported by the Cancer Research Fund of the Damon Runyon / Walter Winchell Foundation. This work was conducted under grants from the Wellcome Trust and The SNP Consortium to E.S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Lander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altshuler, D., Pollara, V., Cowles, C. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516 (2000). https://doi.org/10.1038/35035083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing