Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atherosclerosis

Abstract

Atherosclerosis, a disease of the large arteries, is the primary cause of heart disease and stroke. In westernized societies, it is the underlying cause of about 50% of all deaths. Epidemiological studies have revealed several important environmental and genetic risk factors associated with atherosclerosis. Progress in defining the cellular and molecular interactions involved, however, has been hindered by the disease's aetiological complexity. Over the past decade, the availability of new investigative tools, including genetically modified mouse models of disease, has resulted in a clearer understanding of the molecular mechanisms that connect altered cholesterol metabolism and other risk factors to the development of atherosclerotic plaque. It is now clear that atherosclerosis is not simply an inevitable degenerative consequence of ageing, but rather a chronic inflammatory condition that can be converted into an acute clinical event by plaque rupture and thrombosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of a normal large artery.
Figure 2: Stages in the development of atherosclerotic plaques.
Figure 3: Lesion initiation.
Figure 4: Inflammation.
Figure 5: Foam-cell formation.
Figure 6: Formation of fibrous plaques.
Figure 7: Complex lesions and thrombosis.

Similar content being viewed by others

References

  1. Tamminen, M., Mottino, G., Qiao, J. H., Breslow, J. L. & Frank, J. S. Ultrastructure of early lipid accumulation in apoE-deficient mice. Arterioscl. Thromb. Vasc. Biol. 19, 847–853 (1999).

    Article  CAS  Google Scholar 

  2. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362, 801–809 ( 1993).

    Article  ADS  CAS  Google Scholar 

  3. Libby, P. Changing concepts of atherogenesis. J. Intern. Med. 247, 349–358 (1999).

    Article  Google Scholar 

  4. Mehrabian, M., Wen, P.-Z., Fisler, J., Davis, R. C. & Lusis, A. J. Genetic loci controlling body fat, lipoprotein metabolism, and insulin levels in a multifactorial mouse model. J. Clin. Invest. 101, 2485–2496 ( 1998).

    Article  CAS  Google Scholar 

  5. Lusis, A. J., Weinreb, A. & Drake, T. A. in Textbook of Cardiovascular Medicine (ed. Topol, E. J.) 2389–2413 (Lippincott-Raven, Philadelphia, 1998).

    Google Scholar 

  6. Goldbourt, U. & Neufeld, H. N. Genetic aspects of arteriosclerosis . Arteriosclerosis 6, 357– 377 (1988).

    Article  Google Scholar 

  7. Smithies, O. & Maeda, N. Gene targeting approaches to complex diseases: atherosclerosis and essential hypertension. Proc. Natl Acad. Sci. USA 92, 5266–5272 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Gimbrone, M. A. Jr Vascular endothelium, hemodynamic forces, and atherogenesis . Am. J. Pathol. 155, 1– 5 (1999).

    Article  Google Scholar 

  9. Boren, J. et al. Identification of the principal proteoglycan-binding site in LDL. A single-point mutation in apo-B100 severely affects proteoglycan interaction without affecting LDL receptor binding. J. Clin. Invest. 101, 2658–2664 (1998).

    Article  CAS  Google Scholar 

  10. Grainger, D. J., Kemp, P. R., Liu, A. C., Lawn, R. M. & Metcalfe, J. C. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein(a) mice. Nature 370, 460–462 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Goldstein, J. L., Ho, Y. K., Basu, S. K. & Brown, M. S. Binding sites on macrophages that mediate uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl Acad. Sci. USA 76, 333–337 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Cyrus, T. et al. Disruption of 12/15-lipoxygenase diminishes atherosclerosis in apoE-deficient mice. J. Clin. Invest. 103, 1597–1604 (1999).

    Article  CAS  Google Scholar 

  13. Hegele, R. A. Paraoxonase–genes and disease. Ann. Med. 31, 217–224 (1999).

    Article  CAS  Google Scholar 

  14. Shih, D. M. et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem. 276, 17527–17535 (2000).

    Article  Google Scholar 

  15. Watson, A. D. et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem. 272, 13597–13607 (1997).

    Article  CAS  Google Scholar 

  16. Knowles, J. W. et al. Enhanced atherosclerosis and kidney dysfunction in eNOS(−/−) apoE(−/−) mice are ameliorated by enalapril treatment. J. Clin. Invest. 105, 451–458 (2000).

    Article  CAS  Google Scholar 

  17. Hofmann, M. A. et al. RAGE mediates a novel proinflammatory axis: a central surface receptor for S100/calgranulin polypeptides. Cell 97 , 889–901 (1999).

    Article  CAS  Google Scholar 

  18. Dong, Z. M. et al. The combined role of P- and E-selectins in atherosclerosis . J. Clin. Invest. 102, 145– 152 (1998).

    Article  CAS  Google Scholar 

  19. Collins, R. G. et al. P-selectin or intercellular adhesion molecule (ICAM-1) deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 191, 189– 194 (2000).

    Article  CAS  Google Scholar 

  20. Shih, P. T. et al. Blocking very late antigen-4 integrin decreases leukocyte entry and fatty streak formation in mice fed an atherogenic diet. Circ. Res. 84, 345–351 ( 1998).

    Article  Google Scholar 

  21. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  Google Scholar 

  22. Boring, L., Gosling, J., Cleary, M. & Charo, I. F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Podrez, E. A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest. 105, 1095–1108 (2000).

    Article  CAS  Google Scholar 

  25. Marathe, S., Kuriakose, G., Williams, K. J. & Tabas, I. Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscl. Thromb. Vasc. Biol. 19, 2648–2658 (1999).

    Article  CAS  Google Scholar 

  26. Ivandic, B. et al. Role of group II secretory phospholipase A2 in atherosclerosis I. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2 . Arterioscl. Thromb. Vasc. Biol. 19, 1284–1290 (1999).

    Article  CAS  Google Scholar 

  27. Suzuki, H. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Febbraio, M. et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerosis lesion development in mice. J. Clin. Invest. 105, 1049–1056 (2000).

    Article  CAS  Google Scholar 

  29. Tontonoz, P., Nagy, L., Alvarez, J. L., Thomazy, V. A. & Evans, R. M. PPAR gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241 –252 (1998).

    Article  CAS  Google Scholar 

  30. Fazio, S. et al. Increased atherogenesis in mice reconstituted with apolipoprotein E null macrophages. Proc. Natl Acad. Sci. USA 94, 4647–4652 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Accad, M. et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J. Clin. Invest. 105, 711– 719 (2000).

    Article  CAS  Google Scholar 

  32. Schönbeck, U., Sukhova, G. K., Shimizu, K., Mach, F. & Libby, P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc. Natl Acad. Sci. USA 97, 7458–7463 ( 2000).

    Article  ADS  Google Scholar 

  33. Fyfe, A. I., Qiao, J. H. & Lusis, A. J. Immune deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J. Clin. Invest. 94, 2516–2520 (1994).

    Article  CAS  Google Scholar 

  34. Shaw, P. X. et al. Natural antibodies with T15 idiotype may act in atherosclerosis apoptotic clearance and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  Google Scholar 

  35. Gupta, S. et al. IFN-γ potentiates atherosclerosis in apoE knock-out mice . J. Clin. Invest. 99, 2752– 2761 (1997).

    Article  CAS  Google Scholar 

  36. Gerhard, G. T. & Duell, P. B. Homocysteine and atherosclerosis. Curr. Opin. Lipidol. 10, 417–429 (1999).

    Article  CAS  Google Scholar 

  37. Negoro, N. et al. Blood pressure regulates platelet-derived growth factor A-chain gene expression in vascular smooth muscle cells in vivo. An autocrine mechanism promoting hypertensive vascular hypertrophy. J. Clin. Invest. 95, 1140–1150 ( 1995).

    Article  CAS  Google Scholar 

  38. Nathan, L. & Chaudhuri, G. Estrogens and atherosclerosis . Annu. Rev. Pharmacol. Toxicol. 37, 477 –515 (1997).

    Article  CAS  Google Scholar 

  39. Streblow, D. N. et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99, 511–520 (1999).

    Article  CAS  Google Scholar 

  40. Guevara, N. V., Kim, H.-S., Antonova, E. L. & Chan, L. The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nature Med. 5, 335– 339 (1999).

    Article  CAS  Google Scholar 

  41. Schwartz, S. M. & Murray, C. E. Proliferation and the monoclonal origin of atherosclerotic lesions. Annu. Rev. Med. 49, 437–460 ( 1998).

    Article  CAS  Google Scholar 

  42. Watson, K. E. et al. TGF-β1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J. Clin. Invest. 93, 2106–2113 (1994).

    Article  CAS  Google Scholar 

  43. Moultan, K. S. & Folkman, J. in Molecular Basis of Cardiovascular Disease (ed. Chien, K. R.) 393– 410 (Saunders, Philadelphia, 1999).

    Google Scholar 

  44. Schonbeck, U. et al. CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am. J. Pathol. 156, 7–14 (2000).

    Article  CAS  Google Scholar 

  45. Young, S. G. & Fielding, C. J. The ABCs of cholesterol efflux . Nature Genet. 22, 316– 318 (1999).

    Article  CAS  Google Scholar 

  46. Orsó, E. et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and ABC1-deficient mice. Nature Genet. 24, 192–196 ( 2000).

    Article  Google Scholar 

  47. Geller, D. S. et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289, 119 –123 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  49. Krushkal, J. et al. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 99, 1407–1410 (1999).

    Article  CAS  Google Scholar 

  50. Stoll, M. et al. New target regions for human hypertension via comparative genomics . Genome Res. 10, 473–482 (2000).

    Article  CAS  Google Scholar 

  51. Aitman, T. J. et al. Identification of CD36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nature Genet. 21, 76–83 (1999).

    Article  CAS  Google Scholar 

  52. Shi, W., Haberland, M. E., Jien, M. L., Shih, D. M. & Lusis, A. J. Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102, 75–81 ( 2000).

    Article  CAS  Google Scholar 

  53. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 ( 2000).

    Article  CAS  Google Scholar 

  54. Assmann, G., Cullen, P., Jossa, F., Lewis, B. & Mancini, M. Coronary heart disease: reducing the risk. Arterioscl. Thromb. Vasc. Biol. 19, 1819– 1824 (1999).

    Article  CAS  Google Scholar 

  55. Navab, M. et al. The yin and the yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscl. Thromb. Vasc. Biol. 16, 831– 842 (1996).

    Article  CAS  Google Scholar 

  56. Desumont, C. et al. Complete atherosclerosis regression after human apoE gene transfer in apoE deficient/nude mice. Arterioscl. Thromb. Vasc. Biol. 20, 435–442 ( 2000).

    Article  Google Scholar 

  57. Herrera, V. L. et al. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nature Med. 5, 1383–1389 (1999).

    Article  CAS  Google Scholar 

  58. Gordon, D. J. & Rifkind, B. M. High-density lipoprotein—the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  Google Scholar 

  59. Kronenberg, F. et al. Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis. Circulation 100, 1154– 1160 (1999).

    Article  CAS  Google Scholar 

  60. Luft, F. C. Molecular genetics of human hypertension. J. Hypertens. 16, 1871–1878 (1998).

    Article  CAS  Google Scholar 

  61. Glassman, A. H. & Shapiro, P. A. Depression and the course of coronary artery disease. Am. J. Psychiatry 155, 4–11 (1998).

    Article  CAS  Google Scholar 

  62. Kugiyama, K. et al. Circulating levels of secretory type II phospholipase A 2 predict coronary events in patients with coronary artery disease. Circulation 100, 1280–1284 (1999).

    Article  CAS  Google Scholar 

  63. Steinberg, D. & Witztum, J. L. in Molecular Basis of Cardiovascular Disease (ed. Chien, K. R.) 458–475 (Saunders, Philadelphia, 1999).

    Google Scholar 

  64. Hu, H., Pierce, G. N. & Zhong, G. The atherogenic effects of chlamydia are dependent on serum cholesterol and specific to Chlamydia pneumoniae. J. Clin. Invest. 103, 747–753 (1999).

    Article  CAS  Google Scholar 

  65. Cohen, J. C., Wang, Z., Grundy, S. M., Stoesz, M. R. & Guerra, R. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J. Clin. Invest. 94, 2377– 2384 (1994).

    Article  CAS  Google Scholar 

  66. Wittrup, H. H., Tybjaerg-Hansen, A. & Nordestgaard, B. G. Lipoprotein lipase mutations, plasma lipids and lipoproteins, and risk of ischemic heart disease: a meta-analysis . Circulation 99, 2901– 2907 (1999).

    Article  CAS  Google Scholar 

  67. Samani, N. J., Thompson, J. R., O'Toole, L., Channer, K. & Woods, K. L. A meta-analysis of the association of the deletion allele of the antiogensin-converting enzyme gene with myocardial infarction. Circulation 94, 708– 712 (1996).

    Article  CAS  Google Scholar 

  68. Tuomainen, T.-P. et al. Increased risk of acute myocardial infarction in carriers of the hemachromatosis gene Cys282 Tyr mutation. Circulation 100, 1274–1279 (1999).

    Article  CAS  Google Scholar 

  69. Hingorani, A. D. et al. A common variant of the endothelial nitric oxide synthase (Glu298 → Asp) is a major risk factor for coronary artery disease in the UK. Circulation 100, 1515– 1520 (1999).

    Article  CAS  Google Scholar 

  70. Franco, R. F. et al. Factor XIII and the risk of myocardial infarction. Haematologica 85, 67–71 (2000).

    CAS  PubMed  Google Scholar 

  71. Nievelstein-Post, P., Mottino, G., Fogelman, A. & Frank, J. An ultrastructural study of lipoprotein accumulation in cardiac valves of the rabbit. Arterioscl. Thromb. Vasc. Biol. 14, 1151–1161 (1994).

    Article  CAS  Google Scholar 

  72. Nievelstein, P. F., Fogelman, A. M., Mottino, G. & Frank, J. S. Lipid accumulation in rabbit aorta intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscl. Thromb. Vasc. Biol. 11, 1795–1805 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank R. Chen and K. Wong for help with the preparation of this manuscript and L. Olson for help with the illustrations. Work in my laboratory was supported by NIH grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldons J. Lusis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusis, A. Atherosclerosis. Nature 407, 233–241 (2000). https://doi.org/10.1038/35025203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025203

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing