Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolution and function of ubiquitin-like protein-conjugation systems

An Erratum to this article was published on 01 November 2000

Abstract

Ubiquitin functions by covalently modifying other proteins. In the past few years, a surprising number of other proteins have been identified that, despite often being only slightly similar to ubiquitin, can also be attached to proteins. Newly discovered parallels between the activation of ubiquitin and the biosynthesis of certain enzyme cofactors now hint at the possible evolutionary origins of the ubiquitin system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible ligation of ubiquitin and Ubls to other proteins.
Figure 2: The ubiquitin family of protein modifiers.
Figure 3: Sequence similarities between ubiquitin and Ubls.
Figure 4: Potential parallels between sulphurtransferases and Ubl transferases.

Similar content being viewed by others

References

  1. Haas, A. L. & Siepmann, T. J. Pathways of ubiquitin conjugation . FASEB J. 11, 1257–1268 (1997).

    Article  CAS  Google Scholar 

  2. Hochstrasser, M. There’s the Rub: a novel ubiquitin-like modification involved in cell cycle regulation. Genes Dev. 12, 901– 907 (1998).

    Article  CAS  Google Scholar 

  3. Vierstra, R. D. & Callis, J. Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol. Biol. 41, 435–442 ( 1999).

    Article  CAS  Google Scholar 

  4. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  5. Kretz-Remy, C. & Tanguay, R.M. SUMO/sentrin: protein modifiers regulating important cellular functions. Biochem. Cell Biol. 77, 299–309 (1999).

    Article  CAS  Google Scholar 

  6. Epps, J. L. & Tanda, S. The Drosophila semushi mutation blocks nuclear import of bicoid during embryogenesis. Curr. Biol. 8, 1277–1280 (1998).

    Article  CAS  Google Scholar 

  7. Desterro, J. M. P., Rodriguez, M. S. & Hay, R. T. SUMO-1 modification of IκBα inhibits NF-B activation. Mol. Cell 2, 233– 239 (1998).

    Article  CAS  Google Scholar 

  8. Comer, F. I. & Hart, G. W. O-GlcNAc and the control of gene expression Biochim. Biophys. Acta 1473, 161–171 (1999).

    Article  CAS  Google Scholar 

  9. Bhaskar, V., Valentine, S. A. & Courey, A. J. A functional interaction between dorsal and components of the Smt3 conjugation machinery J. Biol. Chem. 275, 4033–4040 (2000).

    Article  CAS  Google Scholar 

  10. Muller, S. et al. c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13321–13329 (2000).

    Article  CAS  Google Scholar 

  11. Read, M. A. et al. Nedd8 modification of cul-1 activates SCF(beta(TrCP-dependent ubiquitination of IkappaBalpha. Mol. Cell Biol. 20, 2326–2333 (2000).

    Article  CAS  Google Scholar 

  12. Kamura, T., Conrad, M. N., Yan, Q., Conaway, R. C. & Conaway, J. W. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13, 2928–2933 ( 1999).

    Article  CAS  Google Scholar 

  13. Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature 395, 395–398 ( 1998).

    Article  CAS  Google Scholar 

  14. Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes . J. Biol. Chem. 275, 7462– 7465 (2000).

    Article  CAS  Google Scholar 

  15. Bayer, P. et al. Structure determination of the small ubiquitin–related modifier SUMO-1. J. Mol. Biol. 280, 275– 286 (1998).

    Article  CAS  Google Scholar 

  16. Uegaki, K. et al. Structure of the CAD domain of caspase–activated DNase and interaction with the CAD domain of its inhibitor. J. Mol. Biol. 297, 1121–1128 ( 2000).

    Article  CAS  Google Scholar 

  17. Klionsky, D. J. & Ohsumi, Y. Vacuolar import of proteins and organelles from the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 1–32 ( 1999).

    Article  CAS  Google Scholar 

  18. Kramer, A., Mulhauser, F., Wersig, C., Groning, K. & Bilbe, G. Mammalian splicing factor SF3 a120 represents a new member of the SURP family of proteins and is homologous to the essential splicing factor PRP21p of Saccharomyces cerevisiae. RNA 1, 260–272 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto, A. et al. Two types of chicken 2′, 5′-oligoadenylate synthetase mRNA derived from alleles at a single locus. Biochim. Biophys. Acta 1395, 181–191 ( 1998).

    Article  CAS  Google Scholar 

  20. Rajagopalan, K. V. Biosynthesis and processing of the molybdenum cofactors. Biochem. Soc. Trans. 25, 757–761 (1997).

    Article  CAS  Google Scholar 

  21. Taylor, S. V. et al. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation . J. Biol. Chem. 273, 16555– 16560 (1998).

    Article  CAS  Google Scholar 

  22. Unkles, S. E., Heck, I. S., Appleyard, M. V. & Kinghorn, J. R. Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. J. Biol. Chem. 274, 19286–19293 (1999).

    Article  CAS  Google Scholar 

  23. Gonzalez-Pastor, J. E., San Millan, J. L., Castilla, M. A. & Moreno, F. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7. J. Bacteriol. 177, 7131–7140 (1995).

    Article  CAS  Google Scholar 

  24. Borthakur, D., Basche, M., Buikema, W. J., Borthakur, P. B. & Haselkorn, R. Expression, nucleotide sequence and mutational analysis of two open reading frames in the nif gene region of Anabaena sp. strain PCC7120. Mol. Gen. Genet. 221, 227–234 (1990).

    Article  CAS  Google Scholar 

  25. Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J. & Mueller, E. G. Evidence that ThiI, an enzyme shared between thiamin and 4–thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275 , 8283–8286 (2000).

    Article  CAS  Google Scholar 

  26. Hofmann, K., Bucher, P. & Kajava, A. V. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain . J. Mol. Biol. 282, 195– 208 (1998).

    Article  CAS  Google Scholar 

  27. Appleyard, M.V. et al. The Aspergillus nidulans cnxF gene and its involvement in molybdopterin biosynthesis. Molecular characterization and analysis of in vivo generated mutants. J. Biol. Chem. 273, 14869–14876 (1998).

    Article  CAS  Google Scholar 

  28. Li, S-J. & Hochstrasser, M. A new protease required for cell-cycle progression in yeast. Nature 398, 246–251 (1999).

  29. Meyers, G., Stoll, D. & Gunn, M. Insertion of a sequence encoding light chain three of microtubule–associated proteins 1A and 1B in a pestivirus genome: connection with virus cytopathogenicity and induction of lethal disease in cattle. J. Virol. 72, 4139–4148 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kambampati, R. & Lauhon, C. T. Evidence for the transfer of sulfane sulfur from IscS to ThiI during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. J. Biol. Chem. 275, 10727–10730 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank J. Laney, S-J. Li, C. Pickart and R. Swanson for helpful discussion and comments on the manuscript. The work of my laboratory is supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hochstrasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems . Nat Cell Biol 2, E153–E157 (2000). https://doi.org/10.1038/35019643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing