Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Searching for genetic determinants in the new millennium

Abstract

Human genetics is now at a critical juncture. The molecular methods used successfully to identify the genes underlying rare mendelian syndromes are failing to find the numerous genes causing more common, familial, non-mendelian diseases. With the human genome sequence nearing completion, new opportunities are being presented for unravelling the complex genetic basis of non-mendelian disorders based on large-scale genome-wide studies. Considerable debate has arisen regarding the best approach to take. In this review I discuss these issues, together with suggestions for optimal post-genome strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of mendelian and non-mendelian inheritance using a gaussian model.
Figure 2: Examples of two-locus genetic models.
Figure 3
Figure 4: Comparison of linkage (dashed lines) with association analysis (solid lines) for detecting genetic effects.
Figure 5: Example of candidate-gene association analysis using different control groups.

Similar content being viewed by others

References

  1. Vogel, F. & Motulsky, A. G. Human Genetics: Problems and Approaches (Springer, Berlin, 1982).

    Google Scholar 

  2. Penrose, L. S. Some practical considerations in testing for genetic linkage in sib data. Ohio J. Sci. 39, 291–296 (1939).

    Google Scholar 

  3. Clarke, C. A. et al. ABO blood groups and secretor character in duodenal ulcer . Br. Med. J. 2, 725–731 (1956).

    Article  CAS  Google Scholar 

  4. Curtis, D. Use of siblings as controls in case-control association studies. Am. J. Hum. Genet. 61, 319–333 (1997).

    Article  CAS  Google Scholar 

  5. Spielman, R. S. & Ewens, W. J. A sibship based test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet. 62, 450– 458 (1998).

    Article  CAS  Google Scholar 

  6. Boehnke, M. & Langefeld, C. D. Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am. J. Hum. Genet. 62, 950–961 (1998).

    Article  CAS  Google Scholar 

  7. Risch, N. & Teng, J. The relative poser of family-based and case-control designs for association studies of complex human diseases. I. DNA pooling. Genome Res. 8, 1273– 1288 (1998).

    Article  CAS  Google Scholar 

  8. Schaid, D. J. & Rowland, C. Use of parents, sibs and unrelated controls for detection of associations between genetic markers and disease . Am. J. Hum. Genet. 63, 1492– 1506 (1998).

    Article  CAS  Google Scholar 

  9. Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314 –331 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Weber, J. L. & May, P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Litt, M. & Luty, J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44, 397– 401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao, D. C., Keats, B. J. B., Morton, N. E., Yee, S. & Lew, R. Variability of human linkage data. Am. J. Hum. Genet. 30, 516–529 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Morton, N. E. Sequential tests for the detection of linkage. Am. J. Hum. Genet. 7, 277–318 ( 1955).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ott, J. Analysis of Human Genetic Linkage (Johns Hopkins University Press, Baltimore, 1991).

    Google Scholar 

  15. Concannon, P. et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 19, 292 (1998).

    Article  CAS  Google Scholar 

  16. Risch, N. & Zhang, H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 268, 1584–1589 (1998).

    Article  ADS  Google Scholar 

  17. Eaves, L. & Meyer, J. Locating human quantitative trait loci: guidelines for the selection of sibling pairs for genotyping. Behav. Genet. 24, 443–455 (1994).

    Article  CAS  Google Scholar 

  18. Terwilliger, J. D., Zollner, S., Laan, M. & Paabo, S. Mapping genes though the use of linkage disequilibrium generated by genetic drift: ‘drift mapping’ in small populations with no demographic expansion. Hum. Hered. 48, 138–154 (1998).

    Article  CAS  Google Scholar 

  19. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    ADS  CAS  Google Scholar 

  20. Collins, F. S., Guyer, M. S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580– 1581 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Kruglak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139– 144 (1998).

    Article  Google Scholar 

  22. Laan, M. & Paabo, S. Demographic history and linkage disequilibrium in human populations. Nature Genet. 17, 435–438 (1997).

    Article  CAS  Google Scholar 

  23. Lonjou, C., Collins, A. & Morton, N.E. Allelic association between marker loci. Proc. Natl Acad. Sci. USA 96, 1621– 1626 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Wright, A. F., Carothers, A. D. & Pirastu, M. Population choice in mapping genes for complex diseases . Nature Genet. 23, 397– 404 (1999).

    Article  CAS  Google Scholar 

  25. Muller-Myhsok, B. & Abel, L. Genetic analysis of complex diseases. Science 275, 1328– 1329 (1997).

    CAS  PubMed  Google Scholar 

  26. Tu, I.-P & Whittemore, A. S. Power of association and linkage tests when the disease alleles are unobserved. Am. J. Hum. Genet. 64, 641–649 ( 1999).

    Article  CAS  Google Scholar 

  27. Nickerson, D. A et al. DNA sequence diversity in a 9.7kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233– 240 (1998).

    Article  CAS  Google Scholar 

  28. Arnheim, N., Strange, C. & Erlich, H. Use of pooled DNA samples to detect linkage disequilibrium of polymorphic restriction fragments and human disease: studies of the HLA class II loci. Proc. Natl Acad. Sci. USA 82, 6970–6974 (1985).

    Article  ADS  CAS  Google Scholar 

  29. Carmi, R. et al. Use of DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum. Mol. Genet. 3, 1331–1335 (1995).

    Google Scholar 

  30. Barcellos, L. F. et al. Association mapping of disease loci by use of a pooled DNA genomic screen. Am. J. Hum. Genet. 61, 734 –747 (1997).

    Article  CAS  Google Scholar 

  31. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  32. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  33. Falk, C. T. & Rubinstein, P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations . Ann. Hum. Genet. 51, 227– 233 (1987).

    Article  CAS  Google Scholar 

  34. Terwilliger, J. D. & Ott, J. A haplotype-based “haplotype-relative risk” approach to detecting allelic associations . Hum. Hered. 42, 337–346 (1992).

    Article  CAS  Google Scholar 

  35. Spielman, R. S. McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomson, G. Mapping disease genes: family-based association studies. Am. J. Hum. Genet. 57, 487–498 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Teng, J. & Risch, N. The relative power of family-based and case-control designs for linkage disequilibrium studies of complex human diseases. II. Individual genotyping. Genome Res. 9, 234–241 (1999).

    CAS  PubMed  Google Scholar 

  38. Morton, N. E. & Collins, A. Tests and estimates of allelic association in complex inheritance. Proc. Natl Acad. Sci. USA 95 , 11389–11393 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Pritchard, J. K. & Rosenberg, N. A. Use of unlinked genetic markers to detect population stratification in association studies . Am. J. Hum. Genet. 65, 220– 228 (1999).

    Article  CAS  Google Scholar 

  40. Devlin, B. & Roeder, K. Genomic control for association studies . Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  41. Feder, J. N. et al. A novel MHC class 1-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996).

    Article  CAS  Google Scholar 

  42. Farrer, L. A. et al. Effects of age, sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer's disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. J. Am. Med. Assoc. 278, 1349–1356 ( 1997).

    Article  CAS  Google Scholar 

  43. Mignot, E. et al. DZB1*0602 and DQA1*0102 (DQ1) are better markers than DR2 for narcolepsy in Caucasian and Black Americans . Sleep 17, S60–S67 (1994).

    Article  CAS  Google Scholar 

  44. Kempthorne, O. An Introduction to Genetic Statistics (Iowa Univ. Press, Ames, 1969).

    MATH  Google Scholar 

  45. Khoury, M. J., Beaty, T. H. & Cohen, B. H. Fundamentals of Genetic Epidemiology (Oxford University Press, New York, 1993).

    Google Scholar 

  46. Risch, N. Linkage strategies for genetically complex traits. I. Multi-locus models. Am. J. Hum. Genet. 46, 222–228 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lander, E. & Kruglak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet. 11, 241–247 ( 1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risch, N. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000). https://doi.org/10.1038/35015718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing