Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours

Abstract

p73 (ref. 1) has high homology with the tumour suppressor p53 (refs 2,3,4), as well as with p63, a gene implicated in the maintenance of epithelial stem cells5,6,7. Despite the localization of the p73 gene to chromosome 1p36.3, a region of frequent aberration in a wide range of human cancers1, and the ability of p73 to transactivate p53 target genes1, it is unclear whether p73 functions as a tumour suppressor. Here we show that mice functionally deficient for all p73 isoforms exhibit profound defects, including hippocampal dysgenesis, hydrocephalus, chronic infections and inflammation, as well as abnormalities in pheromone sensory pathways. In contrast to p53-deficient mice, however, those lacking p73 show no increased susceptibility to spontaneous tumorigenesis. We report the mechanistic basis of the hippocampal dysgenesis and the loss of pheromone responses, and show that new, potentially dominant-negative, p73 variants are the predominant expression products of this gene in developing and adult tissues. Our data suggest that there is a marked divergence in the physiological functions of the p53 family members, and reveal unique roles for p73 in neurogenesis, sensory pathways and homeostatic control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the murine p73 gene.
Figure 2: Somatic growth defects and mortality in p73-/- pups.
Figure 3: Hippocampal dysgenesis and reelin expression.
Figure 4: Reelin expression in wild-type and p73-/- P3 mice.
Figure 5: a, Left, autoradiograph of wild-type vomeronasal organ showing p73 transcript expression in the neurosensory epithelim (ne).

Similar content being viewed by others

References

  1. Kaghad, M. et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809–819 ( 1997).

    Article  CAS  Google Scholar 

  2. Kinzler, K. W. & Vogelstein, B. Life (and death) in a malignant tumour. Nature 379, 19– 20 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  4. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  5. Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    Article  CAS  Google Scholar 

  6. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  ADS  CAS  Google Scholar 

  8. De Laurenzi, V. et al. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J. Exp. Med. 188, 1763–1768 (1998).

    Article  CAS  Google Scholar 

  9. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  11. Donehower, L. A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215– 221 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 ( 1994).

    Article  CAS  Google Scholar 

  13. Kim, K. C. et al. Airway goblet cell mucin: its structure and regulation of secretion. Eur. Respir. J. 10, 2644– 2649 (1997).

    Article  CAS  Google Scholar 

  14. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 ( 1998).

    Article  CAS  Google Scholar 

  15. Cressman, V. L., Hicks, E. M., Funkhouser, W. K., Backlund, D. C. & Koller, B. H. The relationship of chronic mucin secretion to airway disease in normal and CFTR-deficient mice. Am. J. Respir. Cell. Mol. Biol. 19, 853–866 (1998).

    Article  CAS  Google Scholar 

  16. Go, K. G. The normal and pathological physiology of brain water. Adv. Tech. Stand. Neurosurg. 23, 47–142 (1997).

    Article  CAS  Google Scholar 

  17. Lindeman, G. J. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 12, 1092– 1098 (1998).

    Article  CAS  Google Scholar 

  18. Stanfield, B. B. & Cowan, W. M. The morphology of the hippocampus and dentate gyrus in normal and Reeler mice. J. Comp. Neurol. 185, 393–422 (1979).

    Article  CAS  Google Scholar 

  19. Rakic, P. & Caviness, V. S. Jr Cortical development: view from neurological mutants two decades later. Neuron 14, 1101–1104 (1995).

    Article  CAS  Google Scholar 

  20. Ogawa, M. et al. The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 ( 1995).

    Article  CAS  Google Scholar 

  21. D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Frotscher, M. Cajal–Retzius cells, Reelin, and the formation of layers. Curr. Opin. Neurobiol. 8, 570–575 (1998).

    Article  CAS  Google Scholar 

  23. D'Arcangelo, G. & Curran, T. Reeler: new tales on an old mutant mouse. BioEssays 20, 235 –244 (1998).

    Article  CAS  Google Scholar 

  24. Alcantara, S. et al. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J. Neurosci. 18, 7779–7799 (1998).

    Article  CAS  Google Scholar 

  25. McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    Article  CAS  Google Scholar 

  26. Gage, F. H., Kempermann, G., Palmer, T. D., Peterson, D. A., Ray, J. Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249 –266 (1998).

    Article  CAS  Google Scholar 

  27. Bargmann, C. I. Olfactory receptors, vomeronasal receptors, and the organization of olfactory information. Cell 90, 585– 587 (1997).

    Article  CAS  Google Scholar 

  28. Tirindelli, R. & Mucignat-Caretta, C., Ryba, N. J. Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. Trends Neurosci. 21, 482–486 ( 1998).

    Article  CAS  Google Scholar 

  29. Matsunami, H. & Buck, L. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  Google Scholar 

  30. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763– 773 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank F. Borriello, H. Green, C. Westphal, P. Ferrara, T. Rapoport and L. Buck for helpful discussions; L. Du for blastocyst injections; A. Goffinet for the reelin antibody; H. Liu for the mouse genomic library; and J. Williams for histology preparation. This work was supported by the American Cancer Society and the Council for Tobacco Research (F.M.), and the NIH (R.B., A.S., P.D. and F.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank McKeon or Daniel Caput.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, A., Walker, N., Bronson, R. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000). https://doi.org/10.1038/35003607

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing