Abstract
Several enzyme complexes drive cellular movements by coupling free energy-liberating chemical reactions to the production of mechanical work1–3. A key goal in the study of these systems is to characterize at the molecular level mechanical events associated with individual reaction steps in the catalytic cycles of single enzyme molecules. Ideally, one would like to measure movements driven by single (or a few) enzyme molecules with sufficient temporal resolution and spatial precision that these events can be directly observed. Kinesin, a force-generating ATPase involved in microtubule-based intracellular organelle transport4–10, will drive the unidirectional movement of microscopic plastic beads along microtubules in vitro4,9. Under certain conditions, a few (≤10) kinesin molecules may be sufficient to drive either bead movement or organelle transport. Here we describe a method for determining precise positional information from light-microscope images. The method is applied to measure kinesin-driven bead movements in vitro with a precision of 1–2 nm. Our measurements reveal basic mechanical features of kinesin-driven movements along the micro-tubule lattice, and place significant constraints on possible molecular mechanisms of movement.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eisenberg, E. Lect. Math. Life Sci. 16, 19–59 (1986).
Berg, H. C. & Khan, S. in Mobility and Recognition in Cell Biology (eds Sund, H. & Veeger, C.) 485–497 (de Gruyter, Berlin, 1983).
Johnson, K. A. A. Rev. Biophys. biophys. Chem. 14, 161–188 (1985).
Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).
Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8330–8534 (1986).
Cohn, S. A., Ingold, A. L. & Scholey, J. M. Nature 328, 160–163 (1987).
Porter, M. E. et al. J. biol. Chem. 262, 2794–2802 (1987).
Khan, S., Schnapp, B. J. & Sheetz, M. P. Biophys. J. 49, 415a (1986).
Vale, R. D. et al. Cell 43, 623–632 (1985).
Schroer, T. A., Schnapt, B. J., Rese, T. F. & Sheetz, M. P. (in preparation).
Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).
Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. Cell 40, 559–569 (1985).
Vale, R. D. & Toyoshima, Y. Y. J. Cell Biol. 105, 96a (1987).
Allen, R. D., Allen, N. S. & Travis, J. L. Cell Motil. 1, 291–302 (1981).
Allen, R. D. A. Rev. Biophys. biophys. Chem. 14, 265–290 (1985).
Howard, J. & Hudspeth, A. J. Proc. natn. Acad. Sci. U.S.A. 84, 3064–3068 (1987).
Schnapt, B. J., Chrise, B. J., Khan, S., Sheetz, M. P. & Rese, T. F. Nature (submitted).
MacDonald, D. K. C. Noise and Fluctuations: An Introduction (Wiley, New York, 1962).
Block, S. M. & Berg, H. C. Nature 309, 470–472 (1984).
Khan, S., Meister, M. & Berg, H. C. J. molec. Biol. 184, 645–656 (1985).
Amos, L. A. in Microtubules (eds Roberts, K. & Hyams, J. S.) 1–64 (Academic, London, 1979).
Mandelkow, E.-M. & Mandelkow, E. J. molec. Biol. 181, 123–135 (1985).
Mandelkow, E-M., Schultheiss, R., Rapp, R., Müller, M. & Mandelkow, E. J. Cell Biol. 102, 1067–1073 (1986).
Miller, R. H. & Lasek, R. J. J. Cell Biol. 101, 2181–2193 (1985).
Gilbert, S. P., Allen, R. D. & Sloboda, R. D. Nature 315, 245–248 (1985).
Amos, L. A. J. Cell Sci. 87, 105–111 (1987).
Koonce, M. P. & Schliwa, M. J. Cell Biol. 100, 322–326 (1985).
Schnapp, B. J., Vale, R. D., Sheetz, M. P. & Reese, T. S. Cell 40, 455–462 (1985).
Allen, R. D. et al. J. Cell Biol. 100, 1736–1752 (1985).
Hayden, J. H. & Allen, R. D. J. Cell Biol. 99, 1785–1793 (1984).
Langford, G. M., Allen, R. D. & Weiss, D. G. Cell Motil. Cytoskel. 7, 20–30 (1987).
Ballard, D. H. & Brown, C. M. Computer Vision (Prentice-Hall, Englewood Cliffs, New Jersey, 1982).
Gonzalez, R. C. & Wintz, P. Digital Image Processing (Addison-Wesley, Reading, Massachusetts, 1977).
Inoué, S. Video Microscopy (Plenum, New York, 1986).
Steuer, E., Vale, R. D., Schnapp, B. J., Rese, T. S. & Sheetz, M. P. J. Cell Biol. 101, 397a (1985).
Berg, H. C. & Block, S. M. J. gen. Microbiol. 130, 2915–2920 (1984).
Schnapp, B. J. Meth. Eniym. 134 561–573 (1986).
Ellis, G. W. J. Cell Biol. 101, 83a (1985).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gelles, J., Schnapp, B. & Sheetz, M. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988). https://doi.org/10.1038/331450a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/331450a0
This article is cited by
-
MINSTED tracking of single biomolecules
Nature Methods (2024)
-
Spatial distribution of single guest molecules along thickness of thin films of poly(2-hydroxyethyl acrylate)
Photochemical & Photobiological Sciences (2022)
-
Single-molecule localization microscopy
Nature Reviews Methods Primers (2021)
-
Optical tweezers in single-molecule biophysics
Nature Reviews Methods Primers (2021)
-
Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle
Nature Methods (2021)