Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA

Abstract

Bovine pancreatic deoxyribonuclease I (DNase I), an endonuclease that degrades double-stranded DNA in a nonspecific but sequence-dependent manner1–4, has been used as a biochemical tool in various reactions, in particular as a probe for the structure of chromatin and for the helical periodicity of DNA on the nucleosome and in solution5–10. Limited digestion by DNase I, termed DNase I ‘foot-printing’, is routinely used to detect protected regions in DNA–protein complexes11. Recently, we have solved the three-dimensional structure of this glycoprotein (relative molecular mass 30,400) by X-ray structure analysis at 2.5 Å resolution12 and have subsequently refined it crystallographically at 2.0 Å (ref. 26). Based on the refined structure and the binding of Ca2+–thymidine 3′,5′-diphosphate (Ca-pTp) at the active site12, we propose a mechanism of action and present a model for the interaction of DNase I with double-stranded DNA that involves the binding of an exposed loop region in the minor groove of B-DNA and electrostatic interactions of phosphates from both strands with arginine and lysine residues on either side of this loop. We explain DNase I cleavage patterns in terms of this model and discuss the consequences of the extended DNase I–DNA contact region for the interpretation of DNase I footprinting results.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laskowski, M. Enzymes 4, 289–311 (1971).

    Article  CAS  Google Scholar 

  2. Bernardi, G., Ehrlich, S. D. & Thiery, J. P. Nature new Biol. 246, 36–40 (1973).

    Article  CAS  Google Scholar 

  3. Lomonossoff, G. P., Butler, P. J. G. & Klug, A. J. molec. Biol. 149, 745–760 (1981).

    Article  CAS  Google Scholar 

  4. Drew, H. R. & Travers, A. A. Cell 37, 491–502 (1984).

    Article  CAS  Google Scholar 

  5. Moore, S. Enzymes 14, 287–296 (1981).

    Google Scholar 

  6. Noll, M. Nucleic Acids Res. 1, 1573–1578 (1974).

    Article  CAS  Google Scholar 

  7. Sollner-Webb, B. & Felsenfeld, G. Cell 10, 537–547 (1977).

    Article  CAS  Google Scholar 

  8. Prunell, A. et al. Science 204, 855–858 (1979).

    Article  ADS  CAS  Google Scholar 

  9. Klug, A. & Lutter, L. C. Nucleic Acids Res. 9, 4267–4283 (1981).

    Article  CAS  Google Scholar 

  10. Rhodes, D. & Klug, A. Nature 286, 573–578 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Galas, J. D. & Schmidtz, A. Nucleic Acids Res. 5, 3157–3170 (1978).

    Article  CAS  Google Scholar 

  12. Suck, D., Oefner, C. & Kabsch, W. EMBO J. 3, 2423–2430 (1984).

    Article  CAS  Google Scholar 

  13. Liao, T. H. J. biol. Chem. 250, 3721–3724 (1975).

    CAS  PubMed  Google Scholar 

  14. Liao, T. H., Salnikow, J., Moore, S. & Stein, W. H. J. biol. Chem. 248, 1489–1495 (1973).

    CAS  PubMed  Google Scholar 

  15. Perutz, M. F., Gronenborn, A. M., Clore, G. M., Fogg, J. H. & Shih, D. T.-b. J. molec. Biol. 183, 491–498 (1985).

    Article  CAS  Google Scholar 

  16. Mehdi, S. & Gerlt, J. A. Biochemistry 23, 4844–4852 (1984).

    Article  CAS  Google Scholar 

  17. Price, P. A., Moore, S. & Stein, W. H. J. biol. Chem. 244, 924–928 (1969).

    CAS  PubMed  Google Scholar 

  18. Price, P. A., Stein, W. H. & Moore, S. J. biol. Chem. 244, 929–932 (1969).

    CAS  PubMed  Google Scholar 

  19. Hugli, T. E. & Stein, W. H. J. biol. Chem. 246, 7191–7200 (1971).

    CAS  PubMed  Google Scholar 

  20. Kopka, M. L., Yoon, C., Goodsell, D., Pjura, P. & Dickerson, R. E. J. molec. Biol. 183, 553–563 (1985).

    Article  CAS  Google Scholar 

  21. Drew, H. R. J. molec. Biol. 176, 535–557 (1984).

    Article  CAS  Google Scholar 

  22. McCall, M., Brown, T. & Kennard, O. J. molec. Biol. 183, 385–396 (1985).

    Article  CAS  Google Scholar 

  23. Fratini, A. V., Kopka, M. L., Drew, H. R. & Dickerson, R. E. J. biol. Chem. 257, 14686–14707 (1982).

    CAS  Google Scholar 

  24. Van Dyke, M. M. & Dervan, P. B. Science 225, 1122–1127 (1984).

    Article  ADS  CAS  Google Scholar 

  25. Möller, A., Nordheim, A., Kozlowski, S. A., Patel, D. J. & Rich, A. Biochemistry 23, 54–62 (1984).

    Article  Google Scholar 

  26. Oefner, C. & Suck, D. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suck, D., Oefner, C. Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620–625 (1986). https://doi.org/10.1038/321620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321620a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing