Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence that a human β-tubulin pseudogene is derived from its corresponding mRNA

Abstract

Pseudogenes—sequences which are homologous to functional genes but which contain mutational changes precluding the formation of a functional product—seem to be a common feature of eukaryotic genomes. Such sequences were first described in the 5S gene of Xenopus laevis1 and have since been found in several gene families including those of the α- and β-globins of several species2–10, immunoglobulin Vκ genes11, the actin genes of Dictyostelium12 and the small nuclear RNA genes of man13. Among the globin pseudogenes, there appear to be two kinds of structural organization: genes that have retained their intervening sequences4–7 and those that have lost them completely2,3. A possible explanation for the generation of such intron-lacking genes involves the reverse transcription of a processed mRNA to form cDNA, and the introduction of this cDNA copy into the genome either by recombinant heteroduplex formation2, insertion into a staggered chromosomal break3, or via a retrovirus intermediate14. Here we report the complete sequence of a human β-tubulin pseudogene. The sequence data reveal the absence of any intervening sequences, and the presence, in the genome, of an uninterrupted 17 base-pair (bp) tract of A residues 14 base-pairs 3′ to a poly(A) signal (AATAAA)15. This sequence organization corresponds closely to the sequence organization of the poly(A) signal and poly (A) tract in a β-tubulin mRNA16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacq, D., Miller, J. R. & Brownlee, G. G. Cell 12, 109–120 (1977).

    Article  CAS  Google Scholar 

  2. Nishioka, Y., Leder, A. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 77, 2806–2809 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Vanin, E. F., Goldberg, G. I., Tucker, P. W. & Smithies, O. Nature 286, 222–226 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Jahn, C. L. et al. Cell 21, 159–168 (1980).

    Article  CAS  Google Scholar 

  5. Lacy, E. & Maniatis, T. Cell 21, 545–553 (1980).

    Article  CAS  Google Scholar 

  6. Proudfoot, N. J. & Maniatis, T. Cell 21, 537–554 (1980).

    Article  CAS  Google Scholar 

  7. Cleary, M. L., Schon, E. A. & Lingrel, J. B. Cell 26, 181–190 (1981).

    Article  CAS  Google Scholar 

  8. Lacy, E., Hardison, R. C., Quon, D. & Maniatis, T. Cell 18, 1273–1283 (1979).

    Article  CAS  Google Scholar 

  9. Proudfoot, N. J., Shander, M. H., Manley, J. L., Gefter, M. & Maniatis, T. Science 209, 1329–1336 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Leder, A., Swan, D., Ruddle, F., D'Eustachio, P. & Leder, P. Nature 293, 196–200 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Bentley, D. L. & Rabbitts, T. H. Nature 288, 730–733 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Firtel, R. A., Timon, R., Kimmel, A. R. & McKeown, M. Proc. natn. Acad. Sci. U.S.A. 76, 6206–6210 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Van Arsdell, S. W. et al. Cell 26, 11–17 (1981).

    Article  CAS  Google Scholar 

  14. Goff, S. P., Gilboa, E., Witte, O. N. & Baltimore, D. Cell 22, 777–785 (1980).

    Article  CAS  Google Scholar 

  15. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Valenzuela, P. et al. Nature 289, 650–655 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Cowan, N. J., Wilde, C. D., Chow, L. T. & Wefald, F. Proc. natn. Acad. Sci. U.S.A. 78, 4877–4881 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Wilde, C. D., Chow, L. T., Wefald, F. & Cowan, N. J. Proc. natn. Acad. Sci. U.S.A. 79, 96–100 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Wilde, C. D., Crowther, C. E. & Cowan, N. J. J. molec. Biol. (in the press).

  20. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  21. Grunstein, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Cleveland, D. W. et al. Cell 20, 95–195 (1980).

    Article  CAS  Google Scholar 

  23. Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  24. Benton, W. D. & Davis, R. W. Science 196, 180–181 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Staden, R. Nucleic Acids Res. 8, 3673–3694 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, C., Crowther, C., Cripe, T. et al. Evidence that a human β-tubulin pseudogene is derived from its corresponding mRNA. Nature 297, 83–84 (1982). https://doi.org/10.1038/297083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297083a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing