Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

‘Green revolution’ genes encode mutant gibberellin response modulators

Abstract

World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called ‘green revolution’1,2,3,4. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain3,4. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci4,5. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8)6,7 are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene8,9. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like10 domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cDNA C15-1 maps to the Rht-1 locus.
Figure 2: Structural features of Rht-D1a, d8, GAI and RGA.
Figure 3: Dominant mutant alleles encode proteins with mutant N termini.
Figure 4: Basmati rice is dwarfed by a construct containing the gai ORF.

Similar content being viewed by others

References

  1. Dyson, T. Population and Food: Global Trends and Future Prospects (Routledge, London, (1996).

    Book  Google Scholar 

  2. Conway, G. The Doubly Green Revolution: Food For All in the 21st Century (Penguin Books, London, (1997).

    Google Scholar 

  3. Evans, L. T. Crop Evolution, Adaptation and Yield (Cambridge Univ. Press, Cambridge, (1993).

    Google Scholar 

  4. Gale, M. D. & Youssefian, S. in Progress in Plant Breeding (ed. Russell, G. E.) 1–35 (Butterworths, London, (1985).

    Book  Google Scholar 

  5. Börner, A., Plaschke, J., Korzun, V. & Worland, A. J. The relationships between the dwarfing genes of wheat and rye. Euphytica 89, 69–75 (1996).

    Article  Google Scholar 

  6. Harberd, N. P. & Freeling, M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121, 827–838 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Winkler, R. G. & Freeling, M. Physiological genetics of the dominant gibberellin non-responsive maize dwarfs, Dwarf8 and Dwarf9. Plant. 193, 341–348 (1994).

    CAS  Google Scholar 

  8. Koornneef, M. et al. Agibberellin insensitive mutant of Arabidopsis thaliana. Physiol. Plant. 65, 33–39 (1985).

    Article  CAS  Google Scholar 

  9. Peng, J. et al. The Arabidopsis GAI gene defines a signalling pathway that negatively regulates gibberellin responses. Genes Dev. 11, 3194–3205 (1997).

    Article  CAS  Google Scholar 

  10. Koch, C. A., Anderson, D., Moran, M. F., Ellis, C. E. & Pawson, T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252, 668–674 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Hooley, R. Gibberellins: Perception, transduction and responses. Plant Mol. Biol. 26, 1529–1555 (1994).

    Article  CAS  Google Scholar 

  12. Gale, M. D. & Marshall, G. A. The chromosomal location of Gai1 and Rht1 genes for gibberellin insensitivity and semi-dwarfism, in a derivative of Norin 10 wheat. Heredity 37, 283–289 (1976).

    Article  Google Scholar 

  13. Webb, S. E., Appleford, N. E. J., Gaskin, P. & Lenton, J. R. Gibberellins in internodes and ears of wheat containing different dwarfing alleles. Phytochemistry 47, 671–677 (1998).

    Article  CAS  Google Scholar 

  14. Fujioka, S. et al. The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc. Natl Acad. Sci. USA 85, 9031–9035 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Peng, J., Richards, D. E., Moritz, T., Caño-Delgado, A. & Harberd, N. P. Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. Plant Physiol. 119, 1199–1208 (1999).

    Article  CAS  Google Scholar 

  16. Silverstone, A. L., Ciampaglio, C. N. & Sun, T.-p. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal-transduction pathway. Plant Cell 10, 155–169 (1998).

    Article  CAS  Google Scholar 

  17. Moore, G., Devos, K. M., Wang, Z. & Gale, M. D. Grasses, line up and form a circle. Curr. Biol. 5, 737–739 (1995).

    Article  CAS  Google Scholar 

  18. Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996).

    Article  CAS  Google Scholar 

  19. Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, T. & Theres, K. The Lateral Suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl Acad. Sci. USA 96, 290–295 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839 (1998).

    Article  CAS  Google Scholar 

  21. Becker, S., Groner, B. & Müller, C. W. Three-dimensional structure of the Stat3 homodimer bound to DNA. Nature 394, 145–151 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Darnell, J. E. J STATs and gene regulation. Science 277, 1630–1635 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Fütterer, J. & Hohn, T. Translation in plants—rules and exceptions. Plant Mol. Biol. 32, 159–189 (1996).

    Article  Google Scholar 

  24. Peng, J. & Harberd, N. P. Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5, 351–360 (1993).

    Article  CAS  Google Scholar 

  25. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, (1989).

    Google Scholar 

  26. Devos, K. M., Dubcovsky, J., Dvorák, J., Chinoy, C. N. & Gale, M. D. Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor. Appl. Genet. 91, 282–288 (1995).

    Article  CAS  Google Scholar 

  27. Sudhakar, D. et al. An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res. 7, 289–294 (1998).

    Article  CAS  Google Scholar 

  28. Kurata, N. et al. A300-kilobase-interval genetic map of rice including 883 expressed sequences. Nature Genet. 8, 365–372 (1994).

    Article  CAS  Google Scholar 

  29. Winkler, R. G. & Helentjaris, T. Dominant dwarfs. Maize Genet. Coop. Newsl. 67, 110–111 (1993).

    Google Scholar 

  30. Kawata, T. et al. SH2 signalling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium. Cell 89, 909–916 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Cobb, E. Coen, G. Coupland and C. Dean for comments on the manuscript; L.Sayers for help with figures; A. Harvey, D. Lonsdale and T. Dyer for the wheat/maize cDNA/genomic DNA libraries; the International Atomic Energy Agency (Vienna) for mutagenesis; T.Helentjaris for additional mapping and DNA sequencing; T. Sasaki of the Japanese Rice Genome Programme for EST clones; and the BBSRC (Core Strategic Grant to the John Innes Centre; Plant Molecular Biology II; Agricultural Systems Directorate), EU Framework IV and Pioneer Hi-Bred International for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Harberd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Richards, D., Hartley, N. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999). https://doi.org/10.1038/22307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22307

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing