Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

β-Catenin regulates expression of cyclin D1 in colon carcinoma cells

Abstract

Mutations in the adenomatous polyposis coli (APC) tumour-suppressor gene occur in most human colon cancers1. Loss of functional APC protein results in the accumulation of β-catenin2. Mutant forms of β-catenin have been discovered in colon cancersthat retain wild-type APC genes3,4, and also in melanomas5, medulloblastomas6, prostate cancer7 and gastric8 and hepatocellular9,10 carcinomas. The accumulation of β-catenin activates genes that are responsive to transcription factors of the TCF/LEF family, with which β-catenin interacts11,12,13,14,15. Here we show that β-catenin activates transcription from the cyclin D1 promoter, and that sequences within the promoter that are related to consensus TCF/LEF-binding sites are necessary for activation. The oncoprotein p21ras further activates transcription of the cyclin D1 gene, through sites within the promoter that bind the transcriptional regulators Ets or CREB. Cells expressing mutant β-catenin produce high levels of cyclin D1 messenger RNA and protein constitutively. Furthermore, expression of a dominant-negative form of TCF in colon-cancer cells strongly inhibits expression of cyclin D1 without affecting expression of cyclin D2, cyclin E, or cyclin-dependent kinases 2, 4 or 6. This dominant-negative TCF causes cells to arrest in the G1 phase of the cell cycle; this phenotype can be rescued by expression of cyclin D1 under the cytomegalovirus promoter. Abnormal levels of β-catenin may therefore contribute to neoplastic transformation by causing accumulation of cyclin D1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: β-Catenin activates the cyclin D1 promoter.
Figure 2: β-catenin-responsive elements within the cyclin D1 promoter.
Figure 3: Expression of β-catenin, cyclin D1, cdc2 and cyclin A in HeLa cells expressing mutant β-catenin.
Figure 4: Effects of valine 12 Ras on transcription from the cyclin D1 promoter.
Figure 5: Repression of cyclin D1 expression by a dominant-negative TCF-4E.
Figure 6: G1 growth arrest in HCT116 colon cancer cells by dominant negative TCF-4E, and rescue by ectopic expression of cyclin D1.

Similar content being viewed by others

References

  1. Kinzler, K. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159–170 (1996).

    Article  CAS  Google Scholar 

  2. Munemitsu, S., Albert, I., Souza, B., Rubinfeld, B. & Polakis, P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc. Natl Acad. Sci. USA 92, 3046–3050 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  Google Scholar 

  4. Morin, P. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  5. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  Google Scholar 

  6. Zurawel, R., Chiappa, S., Allen, C. & Raffel, C. Sporadic medulloblastomas contain β-catenin mutations. Cancer Res. 58, 896–899 (1998).

    CAS  PubMed  Google Scholar 

  7. Voeller, H., Truica, C. & Gelmann, E. β-catenin mutations in human prostate cancer. Cancer Res. 58, 2520–2523 (1998).

    CAS  PubMed  Google Scholar 

  8. Kawanishi, J. et al. Loss of E-cadherin-dependent cell-cell adhesion due to a mutation of the β-catenin gene in a human cancer cell line, HSC-39. Mol. Cell. Biol. 15, 1175–1181 (1995).

    Article  CAS  Google Scholar 

  9. Miyoshi, Y. et al. Activation of the β-catenin gene in primary hepatocellular carcinomas by somatic alterations involving Exon 3. Cancer Res. 58, 2524–2527 (1998).

    CAS  PubMed  Google Scholar 

  10. De La Coste, A. et al. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl Acad. Sci. USA 95, 8847–8851 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  12. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Clevers, H. & Grosschedl, R. Transcriptional control of lymphoid development: lessons from gene targeting. Immunol. Today 17, 336–343 (1996).

    Article  CAS  Google Scholar 

  14. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 (1997).

    Article  CAS  Google Scholar 

  15. Geise, K., Kingsley, C., Kirshner, J. & Grosschedl, R. Assembly and function of a TCR-alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev. 9, 995–1008 (1995).

    Article  Google Scholar 

  16. Huber, O. et al. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech. Dev. 59, 310 (1996).

    Article  Google Scholar 

  17. van der Heyden, M. et al. Identification of connexin43 as a target for wnt signaling. J. Cell Sci. 111, 1741–1749 (1998).

    CAS  PubMed  Google Scholar 

  18. Riese, J. et al. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88, 777–787 (1997).

    Article  CAS  Google Scholar 

  19. Brannon, M., Gomperts, M., Sumoy, L., Moon, R. & Kimelman, D. Aβ-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    Article  CAS  Google Scholar 

  20. McKendry, R., Hsu, S., Harland, R. & Grosschedl, R. LEF-1/TCF proteins mediate Wnt-inducible transcription from the Xenopus Nodal related 3 promoter. Dev. Biol. 192, 420–431 (1997).

    Article  CAS  Google Scholar 

  21. He, T. et al. Identification of c-myc as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Arber, N. et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110, 669–674 (1996).

    Article  CAS  Google Scholar 

  23. Arber, N. et al. Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res. 57, 1569–1574 (1997).

    CAS  PubMed  Google Scholar 

  24. Motokura, T. & Arnold, A. PRAD1/cyclin D1 proto-oncogene: genomic organization, 5′DNA sequence, and sequence of a tumor-specific rearrangement breakpoint. Genes Chromosom. Cancer 7, 89–95 (1993).

    Article  CAS  Google Scholar 

  25. Albanese, C. et al. Transforming p21ras mutants and c-ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270, 23589–23597 (1995).

    Article  CAS  Google Scholar 

  26. Zhang, T. et al. Concurrent overexpression of cyclin D1 and cyclin-dependent kinase 4 (cdk4) in intestinal adenomas from multiple intestinal neoplasia (Min) mice and human familial adenomatous polyposis patients. Cancer Res. 57, 169–175 (1997).

    CAS  PubMed  Google Scholar 

  27. Quelle, D. et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev. 7, 1559–1571 (1993).

    Article  CAS  Google Scholar 

  28. Lahti, J. et al. Elimination of cyclin D1 in vertebrate cells leads to an altered cell cycle phenotype, which is rescued by overexpression of murine cyclins D1, D2, or D3 but not by a mutant cyclin D1. J. Biol. Chem. 272, 10859–10869 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Xie, G. Yount, P. Sabbatini and P. Rodriguez-Viciana for technical advice, H. Clevers for suggestions, and other members of the McCormick and Stokoe labs for useful discussions. This work was supported in part by the Daiichi Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank McCormick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetsu, O., McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999). https://doi.org/10.1038/18884

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18884

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing