Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus

Abstract

Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell’s capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mcm4 localization is cell cycle regulated.
Figure 2: Exit of chromatin-bound Mcm4 from the nucleus is dependent upon S-phase progression.
Figure 3: B-cyclin-associated Cdc28 kinase activity blocks nuclear accumulation of Mcm4 in G2/M-arrested cells.
Figure 4: B-cyclins can promote nuclear exit of Mcm4.
Figure 5: Nuclear exit of Mcm4 is activated independently of CLB5,6 expression.
Figure 6: G1-cyclin-dependent nuclear exit of Mcm4.
Figure 7: Cdc6 is required for nuclear accumulation of Mcm4 when Clb–Cdc28 kinases are inactivated in G2/M-arrested cells.
Figure 8: Inactivation of Cdc28 in G2/M-arrested cells is sufficient to cause Cdc6-independent accumulation of Mcm4 in the nucleus.
Figure 9: Regulation of the nuclear localization of Mcm proteins during the budding-yeast cell cycle.

Similar content being viewed by others

References

  1. Bell, S. P. & Stillman, B. Nucleotide dependent recognition of chromosomal origins of DNA replication by a multi-protein complex. Nature 357, 128–134 ( 1992).

    Article  CAS  Google Scholar 

  2. Diffley, J. F. X. & Cocker, J. H. Protein-DNA interactions at a yeast replication origin. Nature 357, 169–172 (1992).

    Article  CAS  Google Scholar 

  3. Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303– 316 (1994).

    Article  CAS  Google Scholar 

  4. Santocanale, C. & Diffley, J. F. X. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15, 6671–6679 (1996).

    Article  CAS  Google Scholar 

  5. Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM complexes and Cdc45p during S phase. Cell 91, 59–69 (1997).

    Article  CAS  Google Scholar 

  6. Tanaka, T., Knapp, D. & Nasmyth, K. Loading of an Mcm protein onto DNA-replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660 (1997).

    Article  CAS  Google Scholar 

  7. Cocker, J. H., Piatti, S., Santocanale, C., Nasmyth, K. & Diffley, J. F. X. An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180–182 ( 1996).

    Article  CAS  Google Scholar 

  8. Piatti, S., Lengauer, C. & Nasmyth, K. Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a “reductional” anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14, 3788–3799 ( 1995).

    Article  CAS  Google Scholar 

  9. Drury, L. S., Perkins, G. & Diffley, J. F. X. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16, 5966– 5976 (1997).

    Article  CAS  Google Scholar 

  10. Kearsey, S. E. & Labib, K. MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398, 113–136 ( 1998).

    Article  CAS  Google Scholar 

  11. Tye, B. K. Mcm proteins in DNA replication. Annu. Rev. Biochem. 68, 649–686 (1999).

    Article  CAS  Google Scholar 

  12. Yan, H., Merchant, A. M. & Tye, B.-K. Cell cycle-regulated nuclear localisation of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 7, 2149–2160 (1993).

    Article  CAS  Google Scholar 

  13. Donovan, S., Harwood, J., Drury, L. S. & Diffley, J. F. X. Cdc6-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl Acad. Sci. USA 94, 5611 –5616 (1997).

    Article  CAS  Google Scholar 

  14. Liang, C. & Stillman, B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants . Genes Dev. 11, 3375–3386 (1997).

    Article  CAS  Google Scholar 

  15. Young, M. R. & Tye, B. K. Mcm2 and Mcm3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae. Mol. Biol. Cell 8, 1587–1601 ( 1997).

    Article  CAS  Google Scholar 

  16. Weinreich, M., Liang, C. & Stillman, B. The Cdc6p nucleotide-binding motif is required for loading Mcm proteins onto chromatin. Proc. Natl Acad. Sci. USA 96, 441–446 (1999).

    Article  CAS  Google Scholar 

  17. Donaldson, A. D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 2, 173– 183 (1998).

    Article  CAS  Google Scholar 

  18. Dahmann, C., Diffley, J. F. X. & Nasmyth, K. A. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of origins to a pre-replicative state. Curr. Biol. 5, 1257– 1269 (1995).

    Article  CAS  Google Scholar 

  19. Detweiler, C. S. & Li, J. J. Ectopic induction of Clb2 in early G1 phase is sufficient to block prereplicative complex formation in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 95, 2384–2389 (1998).

    Article  CAS  Google Scholar 

  20. Broek, D., Bartlett, R., Crawford, K. & Nurse, P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349, 388– 393 (1991).

    Article  CAS  Google Scholar 

  21. Hayles, J., Fisher, D., Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78, 813–822 (1994).

    Article  CAS  Google Scholar 

  22. Moreno, S. & Nurse, P. Regulation of progression through the G1 phase of the cell-cycle by the rum1+ gene. Nature 367, 236–242 ( 1994).

    Article  CAS  Google Scholar 

  23. Labib, K., Moreno, S. & Nurse, P. Interaction of cdc2 and rum1 regulates Start and S-phase in fission yeast. J. Cell Sci. 108, 3285 –3294 (1995).

    CAS  PubMed  Google Scholar 

  24. Itzhaki, J. E., Gilbert, C. S. & Porter, A. C. Construction by gene targeting in human cells of a ‘‘conditional’’ CDC2 mutant that rereplicates its DNA. Nature Genet. 15, 258– 265 (1997).

    Article  CAS  Google Scholar 

  25. Nishitani, H. & Nurse, P. p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83, 397–405 ( 1995).

    Article  CAS  Google Scholar 

  26. Jallepalli, P. V., Brown, G. W., Muzi-Falconi, M., Tien, D. & Kelly, T. J. Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev. 11, 2767–2779 ( 1997).

    Article  CAS  Google Scholar 

  27. Lopez-Girona, A., Mondesert, O., Leatherwood, J. & Russell, P. Negative regulation of cdc18 DNA replication protein by cdc2. Mol. Biol. Cell 9, 63–73 (1998).

    Article  CAS  Google Scholar 

  28. Sánchez, M. M., Calzada, J. A. & Bueno, A. Functionally homologous DNA replication genes in fission and budding yeast. J. Cell Sci. 112, 2381 –2390 (1999).

    PubMed  Google Scholar 

  29. Hennessy, K. M., Clark, C. D. & Botstein, D. Subcellular localization of yeast CDC46 varies with the cell cycle. Genes Dev. 4, 2252– 2263 (1990).

    Article  CAS  Google Scholar 

  30. Dalton, S. & Whitbread, L. Cell-cycle-regulated nuclear import and export of Cdc47, a protein essential for initiation of DNA-replication in budding yeast. Proc. Natl Acad. Sci. USA 92, 2514–2518 (1995).

    Article  CAS  Google Scholar 

  31. Amon, A., Irniger, S. & Nasmyth, K. Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77, 1037–1050 (1994).

    Article  CAS  Google Scholar 

  32. Tyers, M. The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc. Natl Acad. Sci. USA 93, 7772–7776 ( 1996).

    Article  CAS  Google Scholar 

  33. Verma, R., Feldman, R. M. & Deshaies, R. J. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol. Biol. Cell 8, 1427–1437 ( 1997).

    Article  CAS  Google Scholar 

  34. Desdouets, C. et al. Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase α. EMBO J. 17, 4139 –4146 (1998).

    Article  CAS  Google Scholar 

  35. Surana, U. et al. Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12, 1969–1978 ( 1993).

    Article  CAS  Google Scholar 

  36. Piatti, S., Bohm, T., Cocker, J. H., Diffley, J. F. X. & Nasmyth, K. Activation of S-phase promoting CDKs in late G1 defines a ‘‘point of no return’’ after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10, 1516–1531 (1996).

    Article  CAS  Google Scholar 

  37. Amon, A., Tyers, M., Futcher, B. & Nasmyth, K. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74, 993–1007 (1993).

    Article  CAS  Google Scholar 

  38. Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273– 1276 (1994).

    Article  CAS  Google Scholar 

  39. Zwerschke, W., Rottjakob, H.-W. & Küntzel, H. The Saccharomyces cerevisiae CDC6 gene is transcribed at late mitosis and encodes a ATP/GTPase controlling S phase initiation. J. Biol. Chem. 269, 23351– 23356 (1994).

    CAS  PubMed  Google Scholar 

  40. McInerny, C. J., Partridge, J. F., Mikesell, G. E., Creemer, D. P. & Breeden, L. L. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription . Genes Dev. 11, 1277–1288 (1999).

    Article  Google Scholar 

  41. Blow, J. J. & Laskey, R. A. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332, 546–548 (1988).

    Article  CAS  Google Scholar 

  42. Thommes, P., Kubota, Y., Takisawa, H. & Blow, J. J. The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J. 16, 3312– 3319 (1997).

    Article  CAS  Google Scholar 

  43. Hua, X. H., Yan, H. & Newport, J. A role for Cdk2 kinase in negatively regulating DNA replication during S phase of the cell cycle. J. Cell. Biol. 137 , 183–192 (1997).

    Article  CAS  Google Scholar 

  44. Sanders Williams, R., Shohet, R. V. & Stillman, B. A human protein related to yeast Cdc6p. Proc. Natl Acad. Sci. USA 94, 142– 147 (1997).

    Article  Google Scholar 

  45. Saha, P. et al. Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol. Cell Biol. 18, 2758–2767 ( 1998).

    Article  CAS  Google Scholar 

  46. Jiang, W., Wells, N. J. & Hunter, T. Multistep regulation of DNA regulation by Cdk phosphorylation of HsCdc6. Proc. Natl Acad. Sci. USA 96, 6193–6198 (1999).

    Article  CAS  Google Scholar 

  47. Peterson, B. O., Lukas, J., Sorenson, C. S., Bartek, J. & Helin, K. Phosphorylation of mammalian CDC6 by Cyclin A/CDK2 regulates its subcellular localization. EMBO J. 18, 396–410 ( 1999).

    Article  Google Scholar 

  48. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Pidoux for suggestions regarding time-lapse analysis of live cells; I. Adams and J. Kilmartin for suggesting the use of a short linker when tagging proteins with GFP; J.A. Tercero for help in growing cultures; K. Boussett, L. Drury, L. Johnston, G. Perkins and A. Varshavsky for plasmids; K. Nasmyth for strains; our colleagues in the Chromosome Replication laboratory and S.E.K.’s group for helpful discussions; and T. Toda for comments on the manuscript. This work was funded by the Imperial Cancer Research Fund, the Cancer Research Campaign, the Wellcome Foundation, and the EU (contract ERB-MRX-CT970125).

Correspondence and requests for materials should be addressed to J.F.X.D.

Supplementary information is available on Nature Cell Biology’s World-Wide Web site (http://cellbio.nature.com ) or as paper copy from the London editorial office of Nature Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F.X. Diffley.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labib, K., Diffley, J. & Kearsey, S. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Nat Cell Biol 1, 415–422 (1999). https://doi.org/10.1038/15649

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing