Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Diverse and dynamic functions of the Sir silencing complex

Abstract

The yeast Sir protein complex has been implicated in transcriptional silencing and suppression of recombination. The Sir complex creates structured chromosomal domains at telomeres, silent mating-type loci and ribosomal DNA to invoke these functional states. Mechanistic insights into the function of Sir proteins implicate a range of activities in yeast, including repair of DNA double-strand breaks, regulation of the mitotic cell cycle, meiosis and ageing. I speculate that the Sir proteins may be capable of enzymatic modification of chromatin and other substrates, which enables them to carry out a broad range of cellular functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functions of Sir proteins.
Figure 2: Distribution of the Sir repairosome to double-strand breaks.
Figure 3: Nucleolar sequestration of Cdc14p regulates exit from anaphase.
Figure 4: Sir proteins extend lifespan in yeast.

Similar content being viewed by others

References

  1. Craig, I.W. Organization of the human genome. J. Inherit. Metab. Dis. 17, 391–402 (1994).

    Article  CAS  Google Scholar 

  2. Murphy, T.D. & Karpen, G.H. Centromeres take flight: α satellite and the quest for the human centromere. Cell 93, 317–320 (1998).

    Article  CAS  Google Scholar 

  3. Wakimoto, B.T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93, 321– 324 (1998).

    Article  CAS  Google Scholar 

  4. Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).

    Article  CAS  Google Scholar 

  5. Rine, J. & Herskowitz, I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9– 22 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Moazed, D., Kistler, A., Axelrod, A., Rine, J. & Johnson, A.D. Silent information regulator protein complexes in S. cerevisiae: a Sir2/Sir4 complex and evidence for a regulatory domain in Sir4 that inhibits its interaction with Sir3. Proc. Natl Acad. Sci. USA 94, 2186–2191 ( 1997).

    Article  CAS  Google Scholar 

  7. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. & Grunstein, M. Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583– 592 (1995).

    Article  CAS  Google Scholar 

  8. Braunstein, M., Rose, A., Holmes, S., Allis, C.D. & Broach, J. Transcriptional silencing in yeast is associated with reduced nucleosomal acetylation. Genes Dev. 7, 592–604 (1993).

    Article  CAS  Google Scholar 

  9. Loo, S. & Rine, J. Silencers and domains of generalized repression. Science 264, 1768– 1771 (1994).

    Article  CAS  Google Scholar 

  10. Bi, X. & Broach, J. DNA in transcriptionally silenced chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol. Cell. Biol. 17, 7077– 7087 (1997).

    Article  CAS  Google Scholar 

  11. Gottschling, D.E. et al. Position effect at S. cerevisiae telomeres: reversible repression of pol 11 transcription. Cell 63, 751–762 (1990).

    Article  CAS  Google Scholar 

  12. Moretti, P., Freeman, K., Coodly, L. & Shore, D. Evidence that a complex of Sir proteins interacts with a silencer and telomere-binding protein RAP1. Genes Dev. 8, 2257– 2269 (1994).

    Article  CAS  Google Scholar 

  13. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543 –555 (1993).

    Article  CAS  Google Scholar 

  14. Critchlow, S.E. & Jackson, S.P. DNA end-joining: from yeast to man. Trends Biol. Sci. 23, 394–398 (1998).

    Article  CAS  Google Scholar 

  15. Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–744 ( 1998).

    Article  CAS  Google Scholar 

  16. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653– 656 (1998).

    Article  CAS  Google Scholar 

  17. Gottlieb, S. & Esposito, R.E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771–776 (1989).

    Article  CAS  Google Scholar 

  18. Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255– 269 (1997).

    Article  CAS  Google Scholar 

  19. Smith, J.S. & Boeke, J.D. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11, 241–254 (1997).

    Article  CAS  Google Scholar 

  20. Fritze, C. & Esposito, R. Direct evidence for Sir2 modulation of chromatin structure in yeast rDNA. EMBO J. 16, 6495–6509 (1997).

    Article  CAS  Google Scholar 

  21. Brachmann, C.B. et al. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888–2902 (1995).

    Article  CAS  Google Scholar 

  22. Tsukamoto, Y., Kato, J. & Ikeda, H. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388, 900– 903 (1997).

    Article  CAS  Google Scholar 

  23. Astrom, S.U., Okamura, S.M. & Rine, J. Yeast cell-type regulation of DNA repair. Nature 397, 310 (1999).

    Article  CAS  Google Scholar 

  24. Mills, K.D., Sinclair, D.A. & Guarente, L. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97, 609–620 (1999).

    Article  CAS  Google Scholar 

  25. Lee, H.E., Paques, F., Sylvan, J. & Haber, J. Role of yeast SIR genes and mating type in directing DNA double strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  Google Scholar 

  26. Martin, S.G., Laroche, T., Suka, N., Grunstein, M. & Gasser, S.M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97, 621–633 (1999).

    Article  CAS  Google Scholar 

  27. Jeggo, P.A., Carr, A.M. & Lehman, A.R. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 14, 312–316 (1998).

    Article  CAS  Google Scholar 

  28. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749– 1784 (1995).

    Article  CAS  Google Scholar 

  29. Marcand, S. et al. Silencing of genes at nontelomeric sites in yeast is controlled by sequestration of silencing factors at telomeres by Rap1 protein. Genes Dev. 10, 1297–1309 (1996).

    Article  CAS  Google Scholar 

  30. Straight, A.F. et al. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245–256 (1999).

    Article  CAS  Google Scholar 

  31. Schwab, M., Lutum, A.S. & Seufert, W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997).

    Article  CAS  Google Scholar 

  32. Visintin, R., Prinz, S. & Amon, A. CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460– 463 (1997).

    Article  CAS  Google Scholar 

  33. Visintin, R., Hwang, E. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818– 823 (1999).

    Article  CAS  Google Scholar 

  34. Shou, W. et al. Exit from mitosis is triggered by tem1-dependent release of the protein phosphatase Cdc14 from Nucleolar RENT Complex. Cell 97, 233–244 (1999).

    Article  CAS  Google Scholar 

  35. Weber, J.D. et al. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  36. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579– 591 (1999).

    Article  CAS  Google Scholar 

  37. San-Segundo, P.A. & Roeder, G.S. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97, 313–324 (1999).

    Article  CAS  Google Scholar 

  38. Sym, M., Engebrecht, J. & Roeder, G.S. ZIP1 is a synaptonenmal complex protein required for meiotic chromosome synapsis. Cell 72, 365 –378 (1993).

    Article  CAS  Google Scholar 

  39. Mortimer, R.K. & Johnston, J.R. Life span of individual yeast cells. Nature 183, 1751 –1752 (1959).

    Article  CAS  Google Scholar 

  40. Sinclair, D.A., Mills, K. & Guarente, L. Molecular mechanisms of yeast aging. Trends Biol. Sci. 23, 131–134 ( 1998).

    Article  CAS  Google Scholar 

  41. Kaeberlein, M., McVey, M. & Guarente, L. The Sir2/3/4 complex and Sir2 alone promote longevity in S. cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  Google Scholar 

  42. Sinclair, D.A. & Guarente, L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033–1042 (1997).

    Article  CAS  Google Scholar 

  43. Park, P.U., Defossez, P.A. & Guarente, L. Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 3848– 3856 (1999).

    Article  CAS  Google Scholar 

  44. Defossez, P.A. et al. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3, 447–455 (1999).

    Article  CAS  Google Scholar 

  45. Rothstein, R. & Gangloff, S. The shuffling of a mortal coil. Nature Genet. 22, 4–6 (1999).

    Article  CAS  Google Scholar 

  46. Kobayashi, T. & Horiuchi, T. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombination hotspot activities. Genes Cells 1, 465–474 (1996).

    Article  CAS  Google Scholar 

  47. Brewer, B.J. & Fangman, W.L. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55, 637–643 (1988).

    Article  CAS  Google Scholar 

  48. Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (Sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophy. Res. Commun. 260, 273–279 (1999).

    Article  CAS  Google Scholar 

  49. C. elegans sequencing consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article  Google Scholar 

  50. Sherman, J.M. et al. The conserved core of a human SIR2 homolog functions in yeast silencing. Mol. Biol. Cell 10, 3045– 3059 (1999).

    Article  CAS  Google Scholar 

  51. Perez-Martin, J., Uria, J.A. & Johnson, A.D. Phenotypic switching in Candida Albicans is controlled by a SIR2 gene. EMBO J. 18, 2580–2592 (1999).

    Article  CAS  Google Scholar 

  52. Tsang, A.W. & Escalante-Semerena, J.C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required for the lack of nicotinate mononucleotide: 5, 6-dimethylbenzimidazole phophoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Bacteriol. 178, 7016–7019 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank colleagues in the field for stimulating discussions. Work from my laboratory was supported by grants from the NIH, the Seaver Institute, The Ellison Medical Foundation, and The Howard and Linda Stern Fund.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarente, L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23, 281–285 (1999). https://doi.org/10.1038/15458

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing