Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes

Abstract

The implementation of neural stem cell lines as a source material for brain tissue transplants is currently limited by the ability to induce specific neurochemical phenotypes in these cells. Here, we show that coordinated induction of a ventral mesencephalic dopaminergic phenotype in an immortalized multipotent neural stem cell line can be achieved in vitro. This process requires both the overexpression of the nuclear receptor Nurr1 and factors derived from local type 1 astrocytes. Over 80% of cells obtained by this method demonstrate a phenotype indistinguishable from that of endogenous dopaminergic neurons. Moreover, this procedure yields an unlimited number of cells that can engraft in vivo and that may constitute a useful source material for neuronal replacement in Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nurr1 overexpression induces the differentiation of C17.2 neural stem cells into nondopaminergic neurons.
Figure 2: The VM is the source of a signal required for the induction of TH-positive neurons from Nurr1-overexpressing neural stem cells.
Figure 3: High proliferative rates in Nurr1-overexpressing clones correlate with high induction of TH-positive neurons from C17.2-Nurr1 in VM co-cultures.
Figure 4: Retinoids and bFGF increase the number of TH-positive neurons derived from C17.2-Nurr1, but not from C17.2 cells, in VM co-cultures.
Figure 5: VM type 1 astrocytes specifically induce a dopaminergic phenotype on C17.2-Nurr1 neural stem cells in SFM.
Figure 6: Early activity of Nurr1 produces long-lasting changes in gene expression in C17.2 cells.
Figure 7: Characterization and long-term stability of the dopaminergic phenotype acquired by Nurr1-c42 cells after differentiation.

Similar content being viewed by others

References

  1. Rosenthal, A. Auto transplants for Parkinson's disease. Neuron 20 , 169–172 (1998).

    Article  CAS  Google Scholar 

  2. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).

    Article  CAS  Google Scholar 

  3. Gage, F.H., Ray, J. & Fisher, L.J. Isolation, characterization and use of stem cells from the CNS. Ann. Rev. Neurosci. 18, 159– 192 (1995).

    Article  CAS  Google Scholar 

  4. Weiss, S. et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393 (1996).

    Article  CAS  Google Scholar 

  5. Snyder, E.Y. & Macklis, J.D. Multipotent neural progenitor or stem-like cells may be uniquely suited for therapy for some neurodegenerative conditions. Clin. Neurosci. 3, 310– 316 (1996).

    Article  CAS  Google Scholar 

  6. Martínez-Serrano, A. & Björklund, A. Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538 ( 1997).

    Article  Google Scholar 

  7. McKay, R. Stem cells in the central nervous system. Science 276 , 66–71 (1997).

    Article  CAS  Google Scholar 

  8. Studer, L., Tabar, V. & McKay, R.D.G. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    Article  CAS  Google Scholar 

  9. Snyder, E.Y., Yoon, C., Flax, J.D. & Macklis, J.D. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94, 11663–11668 (1997).

    Article  CAS  Google Scholar 

  10. Zetterström, R. H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  Google Scholar 

  11. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  Google Scholar 

  12. Castillo, S.O. et al. Dopamine biosythesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol. Cell. Neurosci. 11, 36–46 (1998).

    Article  CAS  Google Scholar 

  13. Snyder, E.Y., Taylor, R.M. & Wolfe, J.H. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370 (1995).

    Article  CAS  Google Scholar 

  14. Johe, K.K., Hazel, T.G., Muller, T., Dugich-Djordjevic, M.M. & McKay, R.D.G. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140 ( 1996).

    Article  CAS  Google Scholar 

  15. Altman, J. & Bayer, S.A. in The rat nervous system, 2nd edn (ed. Paxinos, G.) 1054 (Academic, San Diego, CA; 1995).

    Google Scholar 

  16. McConnell, S.K. & Kaznowski, C.E. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 ( 1991).

    Article  CAS  Google Scholar 

  17. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessel, T.M. Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  Google Scholar 

  18. Ye, W., Shimamura, K., Rubenstein, J.L.R., Hynes, M. & Rosenthal, A. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  19. Eichele, G. Retinoids: from hindbrain patterning to Parkinson's disease. Trends Genet. 13, 343–345 ( 1997).

    Article  CAS  Google Scholar 

  20. Krezel, W. Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 864–867 (1998).

    Google Scholar 

  21. Kitchens, D.L., Snyder, E.Y. & Gottlieb, D.I. FGF & EGF are mitogens for immortilized neural progenitors. J. Neurobiol. 25, 797– 807 (1994).

    Article  CAS  Google Scholar 

  22. Lehmann, J.M. et al. Retinoids selective for retinoid X receptor response pathways. Science 258, 1944–1946 (1992).

    Article  CAS  Google Scholar 

  23. Perlmann, T. & Jansson, L. A novel pathway for vitamin A signaling mediated by RXR heterodimerization with NGFI-B and Nurr1. Genes Dev. 9, 769–782 ( 1995).

    Article  CAS  Google Scholar 

  24. O'Malley, E.K., Sieber, B.-A., Black, I.B. & Dreyfus, C.F. Mesencephalic type I astrocytes mediate the survival of substantia nigra dopaminergic neurons in culture. Brain Res. 582, 65– 70 (1992).

    Article  CAS  Google Scholar 

  25. Denis-Donini, S., Glowinski, J. & Prochiantz, A. Glial heterogeneity may define the three-dimensional shape of mouse mesencephalic dopaminergic neurones. Nature 307, 641–643 (1984).

    Article  CAS  Google Scholar 

  26. Zetterström, R.H., Williams, R., Perlmann, T. & Olson, L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res. 41, 111–120 (1996).

    Article  Google Scholar 

  27. McCaffery, P. & Dräger, U.C. High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc. Natl. Acad. Sci. USA 91, 7772– 7776 (1994).

    Article  CAS  Google Scholar 

  28. Trupp, M. et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature 381, 785–789 (1996).

    Article  CAS  Google Scholar 

  29. Jing, S.Q. et al. GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFRα, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  Google Scholar 

  30. Hyman, C. et al. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347 (1994).

    Article  CAS  Google Scholar 

  31. Lin, L.H., Doherty, D.H., Lile, J.D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1173 ( 1993).

    Article  CAS  Google Scholar 

  32. Law, S.W., Conneely, O.M., DeMayo, F.J. & O'Malley, B.W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 6, 2129–2135 (1992).

    CAS  PubMed  Google Scholar 

  33. Naveilhan, P. et al. Expression and regulation of GFRα3, a glial cell line-derived neurotrophic factor family receptor. Proc. Nat. Acad. Sci. USA 95, 1295–1300 ( 1998).

    Article  CAS  Google Scholar 

  34. McCarthy, K.D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890– 902 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. P. Ernfors and B.-A. Sieber for critical reading of the manuscript and discussion, Drs. S. Ferré and M. Höistad for assistance on HPLC, Dr. L. Foley for the generous gift of SR11237, Lotta Johansson for secretarial help, and Annika Ahlsen for additional assistance. Financial support was obtained from the European Commission, Swedish MRC, Karolinska Institute, and the Jeanssonska and Kapten Arthur Eriksson Foundations. E.A. and J.W. were supported by the Karolinska Institute. D.S.C. was supported by a fellowship from the Gulbenkian Foundation (PGDBM) and Programa Praxis XXI. E.Y.S. was supported by grants from the National Institute of Neurological Diseases and Stroke. J.M.C. was supported by a fellowship from the EMBO. Requests for parental C17.2 cells should be addressed to E.Y.S. (e-mail: snyder@A1.TCH.harvard.edu). Correspondence and requests for materials should be addressed to E.A. (e-mail: ernest@cajal.mbb.ki.se).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Arenas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J., Åkerud, P., Castro, D. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol 17, 653–659 (1999). https://doi.org/10.1038/10862

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing