Skip to main content

Advertisement

Role of the CDK Inhibitor p27 (Kip1) in Mammary Development and Carcinogenesis: Insights from Knockout Mice

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The cyclin–dependent kinase inhibitor p27 (Kip1) is an important cell cycle regulatory gene in breast cancer, and decreased p27 expression is associated with poor prognosis. Some investigations of its role in mammary development have demonstrated reduced cyclin D1 expression and consequent lack of lobuloalveolar development, but others have found increased cyclin E–Cdk2 activity and increased proliferation balanced by increased apoptosis. It is unclear at present why these apparently divergent results have been obtained. Mice with reduced p27 gene dosage alone do not develop mammary carcinomas but do display substantially shorter tumor latency upon overexpression of erbB2, consistent with a role for p27 as a mammary tumor suppressor gene. In this review we summarize these and other data addressing the role of p27 in normal mammary epithelium and experimental models of mammary carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Arnaout, R. Jordan, and J. Slingerland (2004). p27 Deregulation in breast cancer: Prognostic significance and implications for therapy. J. Mammary. Gland Biol. Neoplasia 9:67–80.

    Google Scholar 

  2. M. Malumbres, and M. Barbacid (2001). To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer 1:222–231.

    Google Scholar 

  3. C. J. Sherr, and J. M. Roberts (1999). CDK inhibitors: Positive and negative regulators of G1 phase progression. Genes. Dev. 13:1501–1512.

    Google Scholar 

  4. N. P. Pavletich (1999). Mechanisms of cyclin-dependent kinase regulation: Structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287:821–828.

    Google Scholar 

  5. J. LaBaer, M. D. Garrett, L. F. Stevenson, J. M. Slingerland, C. Sandhu, H. S. Chou, A. Fattaey, and E. Harlow (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11:847–862.

    Google Scholar 

  6. O. Coqueret (2002). New roles for p21 and p27 cell-cycle inhibitors: A function for each cell compartment? Trends Cell Biol. 13:65–70.

    Google Scholar 

  7. M. Cheng, O. Olivier, J. A. Diehl, M. Fero, M. F. Roussel, J. M. Roberts, and C. J. Sherr (1999). The p21Cip1 and p27Kip1 CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18:1571–1583.

    Google Scholar 

  8. T. K. Bagui, S. Mohapatra, E. Haura, and W. J. Pledger (2003). p27Kip1 and p21Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol. Cell Biol. 23:7285–7290.

    Google Scholar 

  9. Y. Sugiyama, K. Tomoda, T. Tanaka, Y. Arata, N. Yoneda-Kato, J. Kato (2001). Direct binding of the signal-transducing adaptor Grb2 facilitates down-regulation of the cyclin-dependent kinase inhibitor p27Kip1. J. Biol. Chem. 276:12084–12090.

    Google Scholar 

  10. S. J. Moeller, E. D. Head, and R. J. Sheaff (2003). p27Kip1 inhibition of GRB2-SOS formation can regulate Ras activation. Mol. Cell. Biol. 23:3735–3752.

    Google Scholar 

  11. S. S. McAllister, M. Becker-Hapak, G. Pintucci, M. Pagano, and S. F. Dowdy (2003). Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol. Cell Biol. 23:216–228.

    Google Scholar 

  12. E. A. Davison, C. S. L. Lee, N. J. Naylor, S. R. Oakes, R. L. Sutherland, L. Hennighausen, C. J. Ormandy, and E. A. Musgrove (2003). The CDK inhibitor p27 (Kip1) regulates both DNA synthesis and apoptosis in mammary epithelium but is not required for its functional development during pregnancy. Mol. Endocrinol. 17:2436–2447.

    Google Scholar 

  13. G. Kong, S. S. Chua, Y. Yijun, F. Kittrell, R. C. Moraes, D. Medina, and T. K. Said (2002). Functional analysis of cyclin D2 and p27Kip1 in cyclin D2 transgenic mouse mammary gland during development. Oncogene 21:7214–7225.

    Google Scholar 

  14. S. R. Master, J. L. Hartman, C. M. D'Cruz, S. E. Moody, E. A. Keiper, S. I. Ha, J. D. Cox, G. K. Belka, and L. A. Chodosh (2002). Functional microarray analysis of mammary organogenesis reveals a developmental role in adaptive thermogenesis. Mol. Endocrinol. 16:1185–1203.

    Google Scholar 

  15. P. Sicinski, J. Liu Donaher, S. B. Parker, T. Li, A. Fazeli, H. Gardner, S. Z. Haslam, R. B. Bronson, S. J. Elledge, and R. A. Weinberg (1995). Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630.

    Google Scholar 

  16. V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372.

    Google Scholar 

  17. Y. Geng, W. Whoriskey, M. Y. Park, R. T. Bronson, R. H. Medema, T. Li, R. A. Weinberg, and P. Sicinski (1999). Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97:767–777.

    Google Scholar 

  18. V. Fantl, P. A. W. Edwards, J. H. Steel, B. K. Vonderhaar, and C. Dickson (1999). Impaired mammary gland development in Cyl-1 −/− mice during pregnancy and lactation is epithelial cell autonomous. Dev. Biol. 212:1–11.

    Google Scholar 

  19. M. L. Fero, M. Rivkin, M. Tasch, P. Porter, C. E. Carw, E. Firpo, K. Polyak, L. H. Tsai, V. Broudy, R. M. Perlmutter, K. Kaushansky, and J. M. Roberts (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumourigenesis, and female sterility in p27 (Kip1)-deficient mice. Cell 85:733–744.

    Google Scholar 

  20. K. Nakayama, N. Ishida, M. Shirane, A. Inomata, T. Inoue, N. Shishido, I. Horii, D. Y. Loh, K.-I. Nakayama (1996). Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumours. Cell 85:707–720.

    Google Scholar 

  21. H. Kiyokawa, R. D. Kineman, Manova-K. O. Todorova, V. C. Soares, E. S. Hoffman, M. Ono, D. Khanam, A. C. Hayday, L. A. Frohman, and A. Koff (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85:721–732.

    Google Scholar 

  22. W. Tong, H. Kiyokawa, T. J. Soos, M. S. Park, V. C. Soares, K. Manova, J. W. Pollard, and A. Koff (1998). The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinses, uncouples differentiation and growth arrest during the granulosa->luteal transition. Cell Growth Differ. 9:787–794.

    Google Scholar 

  23. W. Tong, and J. W. Pollard (2001). Genetic evidence for the interactions of cyclin D1 and p27Kip1 in mice. Mol. Cell. Biol. 21:1319–1328.

    Google Scholar 

  24. Y. Geng, Q. Yu, E. Sicinska, M. Das, R. T. Bronson, and P. Sicinski (2001). Deletion of the p27Kip1 gene restores normal development in cyclin D1-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 98:194–199.

    Google Scholar 

  25. T. Tsutsui, B. Hesabi, D. S. Moons, P. P. Pandolfi, K. S. Hansel, A. Koff, H. Kiyokawa (1999). Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell Biol. 19:7011–7019.

    Google Scholar 

  26. R. S. Muraoka, A. E. G. Lenferink, J. Simpson, D. M. Brantley, L. R. Roebuck, F. M. Yakes, and C. L. Arteaga (2001). Cyclin-dependent kinase inhibitor p27Kip1 is required for mouse mammary gland morphogenesis and function. J. Cell Biol. 153:917–931.

    Google Scholar 

  27. A. J. Deans, K. J. Simpson, M. Trivett, M. A. Brown, and G. A. McArthur (Manuscript submitted for publication). Brca1 inactivation induces p27 Kip1-dependent cell cycle arrest and delayed development in the mouse mammary gland.

  28. R. S. Muraoka, A. E. Lenferink, B. Law, E. Hamilton, D. M. Brantley, L. R. Roebuck, and C. L. Arteaga (2002). ErbB2/Neuinduced, cyclin D1-dependent transformation is accelerated in p27-haploinsufficient mammary epithelial cells but impaired in p27-null cells. Mol. Cell. Biol. 22:2204–2219.

    Google Scholar 

  29. E. A. Musgrove, A. Swarbrick, C. S. L. Lee, A. L. Cornish, and R. L. Sutherland (1998). Mechanisms of CDK inactivation by progestins. Mol. Cell. Biol. 18:1812–1825.

    Google Scholar 

  30. J. Slingerland, and M. Pagano (2000). Regulation of the Cdk inhibitor p27 and its deregulation in cancer. J. Cell. Physiol. 183:10–17.

    Google Scholar 

  31. J. Philipp-Staheli, S. R. Payne, and C. J. Kemp (2001). p27Kip1: Regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264:148–168.

    Google Scholar 

  32. M. L. Fero, E. Randel, K. E. Gurley, J. M. Roberts, and C. J. Kemp (1998). The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396:177–180.

    Google Scholar 

  33. J. Philipp, K. Vo, K. E. Gurley, K. Seidel, and C. J. Kemp (2001). Tumor suppression by p27/Kip1 and p21/Cip1 during chemically induced skin carcinogenesis. Oncogene 18:4689–4698.

    Google Scholar 

  34. J. Philipp-Staheli, K.-H. Kim, S. R. Payne, K. E. Gurley, D. Liggitt, G. Longton, and C. J. Kemp (2002). Pathway-specific tumor suppression: Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice. Cancer Cells 1:355–368.

    Google Scholar 

  35. W. C. Yang, L. Bancroft, C. Nicholas, I. Lozonschi, and L. H. Augenlicht (2003). Targeted inactivation of p27kip1 is sufficient for large and small intestinal tumorigenesis in the mouse, which can be augmented by a Western-style high-risk diet. Cancer Res. 2003:4990–4996.

    Google Scholar 

  36. H. C. Hwang, C. P. Martins, Y. Bronkhurst, E. Randel, A. Berns, M. Fero, and B. E. Clurman (2002). Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc. Natl. Acad. Sci. U.S.A. 99:11293–11298.

    Google Scholar 

  37. C. P. Martins and Berns A. (2002). Loss of p27Kip1 but not p21Cip1 decreases survival and synergises with MYC in murine lymphomagenesis. EMBO J. 21:3739–3748.

    Google Scholar 

  38. A. Di Christofano, M. De Acetis, A. Koff, Cordon-Cardo C, and P. P. Pandolfi. (2001). Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat. Genet. 27:222–224.

    Google Scholar 

  39. M. S. Park, J. Rosai, H. T. Nguyen, P. Capodieci, C. Cordon-Cardo, and A. Koff (1999). p27 and Rb are on overlapping pathways suppressing tumorigenesis in mice. Proc. Natl. Acad. Sci. U.S.A. 1999:6382–6387.

    Google Scholar 

  40. S. Cipriano, L. Chen, K. H. Burns, A. Koff, and M. M. Matzuk (2001). Inhibin and p27 interact to regulate gonadal tumorigenesis. Mol. Endocrinol. 15:985–996.

    Google Scholar 

  41. D. F. Stern (2003). ErbBs in mammary development. Exp. Cell Res. 284:89–98.

    Google Scholar 

  42. T. Holbro, G. Civenni, and N. E. Hynes (2003). The ErbB receptors and their role in cancer progression. Exp. Cell Res. 284:99–110.

    Google Scholar 

  43. Y. Yarden and M. X. Sliwkowski (2001). Untangling the ErbB signaling network. Nat. Rev. Mol. Cell. Biol. 2:127–137.

    Google Scholar 

  44. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  45. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    Google Scholar 

  46. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  47. J. Hulit, R. J. Lee, R. G. Russell, and R. G. Pestell (2002). ErbB-2-induced mammary tumor growth: The role of cyclin D1 and p27Kip1. Biochem. Pharmacol. 64:827–836.

    Google Scholar 

  48. L. Newman, W. Xia, H. Y. Yang, A. Sahin, M. Bondy, F. Lukmanji, M. C. Hung, and M. H. Lee (2001). Correlation of p27 protein expression with HER-2/neu expression in breast cancer. Mol. Carcinog. 30:169–175.

    Google Scholar 

  49. V. J. Spataro, H. Litman, G. Viale, F. Maffini, M. Masullo, R. Golouh, Martinez-F. J. Tello, P. Grigolato, K. B. Shilkin, B. A. Gusterson, M. Castiglione-Gertsch, K. Price, J. Lindtner, H. Cortes-Funes, E. Simoncini, M. J. Byrne, J. Collins, R. D. Gelber, A. S. Coates, and A. Goldhirsch (2003). (International Breast Cancer Study Group). Decreased immunoreactivity for p27 protein in patients with early-stage breast carcinoma is correlated with HER-2/neu overexpression and with benefit from one course of perioperative chemotherapy in patients with negative lymph node status: Results from International Breast Cancer Study Group Trial V. Cancer 97:1591–1600.

    Google Scholar 

  50. H. A. Lane, I. Beuvink, A. B. Motoyama, J. M. Daly, R. M. Neve, N. E. Hynes (2000). ErbB2 potentiates breast tumor proliferation through modulation of p27(Kip1)—Cdk2 complex formation: Receptor overexpression does not determine growth dependency. Mol. Cell Biol. 20:3210–3223.

    Google Scholar 

  51. H. Y. Yang, B. P. Zhou, M. C. Hung, and M. H. Lee (2000). Oncogenic signals of HER-2/neu in regulating the stability of the cyclin-dependent kinase inhibitor p27. J. Biol. Chem. 275:24735–24739.

    Google Scholar 

  52. A. E. Lenferink, D. Busse, W. M. Flanagan, F. M. Yakes, and C. L. Arteaga (2001). ErbB2/neu kinase modulates cellular p27(Kip1) and cyclin D1 through multiple signaling pathways. Cancer Res. 61:6583–6591.

    Google Scholar 

  53. H. Y. Yang, R. Shao, M. C. Hung, and M. H. Lee (2001). p27 Kip1 inhibits HER2/neu-mediated cell growth and tumorigenesis. Oncogene 20:3695–3702.

    Google Scholar 

  54. Q. Yu, Y. Geng, and P. Sicinski (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411:1017–1021.

    Google Scholar 

  55. D. B. Bowe, N. J. Kenney, Y. Adereth, and I. G. Maroulakou (2002). Suppression of Neu-induced mammary tumor growth in cyclin D1-deficient mice is compensated for by cyclin E. Oncogene 21:291–298.

    Google Scholar 

  56. U. Hermanto, C. S. Zong, and L. H. Wang (2001). ErbB2-overexpressing human mammary carcinoma cells display an increased requirement for the phosphatidylinositol 3-kinase signaling pathway in anchorage-independent growth. Oncogene 20:7551–7562.

    Google Scholar 

  57. R. J. Jackson, J. Adnane, A. Coppola, S. M. Sebti, and W. J. Pledger (2002). Loss of the cell cycle inhibitors p21Cip1 and p27Kip1 enhances tumorigenesis in knockout mouse models. Oncogene 21:8486–8497.

    Google Scholar 

  58. J. S. Carroll, D. K. Lynch, A. Swarbrick, J. M. Renoir, B. Sarcevic, R. J. Daly, E. A. Musgrove, and R. L. Sutherland (2003). p27(Kip1) induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res. 63:4322–4326.

    Google Scholar 

  59. J. C. Donovan, A. Milic, and J. M. Slingerland (2001). Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J. Biol. Chem. 276:40888–40895.

    Google Scholar 

  60. S. Cariou, J. C. H. Donovan, W. M. Flanagan, A. Milic, N. Bhattacharya, J. M. Slingerland (2000). Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc. Natl. Acad. Sci. U.S.A. 97:9042–9046.

    Google Scholar 

  61. G. Pohl, M. Rudas, O. Dietze, S. Lax, E. Markis, R. Pirker, C. C. Zielinski, H. Hausmaninger, E. Kubista, H. Samonigg, R. Jakesz, and M. Filipits (2003). High p27Kip1 expression predicts superior relapse-free and overall survival for premenopausal women with early-stage breast cancer receiving adjuvant treatment with tamoxifen plus goserelin. J. Clin. Oncol. 21:3594–3600.

    Google Scholar 

  62. D. Busse, R. S. Doughty, T. T. Ramsey, W. E. Russell, J. O. Price, W. M. Flanagan, L. K. Shawver, and C. L. Arteaga (2000). Reversible G(1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27(KIP1) independent of MAPK activity. J. Biol. Chem. 275:6987–6995.

    Google Scholar 

  63. A. R. Venkitaraman (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182.

    Google Scholar 

  64. X. Xu, K. U. Wagner, D. Larson, Z. Weaver, C. Li, T. Ried, L. Hennighausen, A. Wynshaw-Boris, and C. X. Deng (1999). Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22:37–43.

    Google Scholar 

  65. E. A. Williamson, F. Dadmanesh, and H. P. Koeffler (2002). BRCA1 transactivates the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 21:3199–3206.

    Google Scholar 

  66. P. O. Chappuis, L. Kapusta, L. R. Begin, N. Wong, J. S. Brunet, S. A. Narod, J. Slingerland, and W. D. Foulkes (2000). Germline BRCA1/2 mutations and p27(Kip1) protein levels independently predict outcome after breast cancer. J. Clin. Oncol. 18:4045–4052.

    Google Scholar 

  67. Y. Niwa, T. Oyama, and T. Nakajima (2000). BRCA1 expression status in relation to DNA methylation of the BRCA1 promoter region in sporadic breast cancers. Jpn. J. Cancer Res. 91:519–526.

    Google Scholar 

  68. M. Robson, P. Rajan, P. P. Rosen, T. Gilewski, Y. Hirschaut, P. Pressman, B. Haas, L. Norton, and K. Offit (1998). BRCA-associated breast cancer: Absence of a characteristic immunophenotype. Cancer Res. 58(9):1839–1842.

    Google Scholar 

  69. V. L. Cressman, D. C. Backlund, E. M. Hicks, L. C. Gowen, V. Godfrey, and B. H. Koller (1999). Mammary tumor formation in p53-and BRCA1-deficient mice. Cell Growth Differ. 10:1–10.

    Google Scholar 

  70. M. A. Brown, H. Nicolai, K. Howe, T. Katagiri, el. Lalani, N, K. J. Simpson, N. W. Manning, A. Deans, P. Chen, K. K. Khanna, M. R. Wati, B. L. Griffiths, C. Xu, G. Stamp, E. Solomon (2002). Expression of a truncated Brca1 protein delays lactational mammary development in transgenic mice. Transgenic Res. 11:467–478.

    Google Scholar 

  71. S. G. Brodie, X. Xu, W. Qiao, W. M. Li, L. Cao, and C. X. Deng (2001). Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene 20:7514–7523.

    Google Scholar 

  72. X. Xu, W. Qiao, S. P. Linke, L. Cao, W. Li, P. A. Furth, C. C. Harris, and C. X. Deng (2001). Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat. Genet. 28:266–271.

    Google Scholar 

  73. S. G. Brodie and C. X. Deng (2001). BRCA1-associated tumorigenesis: What have we learned from knockout mice? Trends Genet. 17:S18–S22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Musgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musgrove, E.A., Davison, E.A. & Ormandy, C.J. Role of the CDK Inhibitor p27 (Kip1) in Mammary Development and Carcinogenesis: Insights from Knockout Mice. J Mammary Gland Biol Neoplasia 9, 55–66 (2004). https://doi.org/10.1023/B:JOMG.0000023588.55733.84

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000023588.55733.84