Abstract
An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing 13C-methyl labeled Val, Leu, and Ile (δ1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the hydrophobic core and overall fold of the protein are easily obtained. NMR data are acquired using cryogenic probe technology which markedly reduces the spectrometer time needed for data acquisition. The approach is demonstrated by determining the overall fold of the antiapoptotic protein, Bcl-xL, from data collected in only 4 days. Refinement of the Bcl-xL structure to a backbone rmsd of 0.95 Å was accomplished with data collected in an additional 3 days. A distance analysis of 180 different proteins and structure calculations using simulated data suggests that our method will allow the global folds of a wide variety of proteins to be determined.
Similar content being viewed by others
References
Aghazadeh, B., Zhu, K., Kubiseski, T.J., Liu, G.A., Pawson, T., Zheng, Y. and Rosen, M.K. (1998) Nat. Struct. Biol., 5, 1098–1107.
Arrowsmith, C.H., Pachter, R., Altman, R.B., Iyer, S.B. and Jardetzky, O. (1990) Biochemistry, 29, 6332–6341.
Black, R.D., Early, T.A., Roemer, P.B., Mueller, O.M., Mogro-Campero, A., Turner, L.G. and Johnson, G.A. (1993) Science, 259, 793–795.
Brodin, P., Drakenberg, T., Thulin, E., Forsén, S. and Grundstrüm, T. (1989) Protein Eng., 2, 353–358.
Burley, S.K., Almo, S.C., Bonanno, J.B., Capel, M., Chance, M.R., Gaasterland, T., Lin, D., Šali, A., Studier, F.W. and Swaminathan, S. (1999) Nat. Genet., 23, 151–157.
Carson, M.J. (1987) J. Mol. Graphics, 5, 103–106.
Clore, G.M., Starich, M.R. and Gronenborn, A.M. (1998) J. Am. Chem. Soc., 120, 10571–10572.
Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M. and Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513–6514.
Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289–302.
Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389–1401.
Goto, N.K., Gardner, K.H., Mueller, G.A., Willis, R.C. and Kay, L.E. (1999) J. Biomol. NMR, 13, 369–374.
Grzesiek, S., Anglister, J., Ren, H. and Bax, A. (1993) J. Am. Chem. Soc., 115, 4369–4370.
Grzesiek, S., Wingfield, P., Stahl, S., Kaufman, J.D. and Bax, A. (1995) J. Am. Chem. Soc., 117, 9594–9595.
Hajduk, P.J., Gerfin, T., Boehlen, J.-M., Häberli, M., Marek, D. and Fesik, S.W. (1999) J. Med. Chem., 42, 2315–2317.
Hajduk, P.J., Augeri, D.J., Mack, J., Mendoza, R., Yang, J., Betz, S. and Fesik, S.W. (2000) J. Am. Chem. Soc., 122, 7898–7904.
Hansen, M.R., Mueller, L. and Pardi, A. (1998) Nat. Struct. Biol., 5, 1065–1074.
Hendrickson, W.A., Horton, J.R. and LeMaster, D.M. (1990) EMBO J., 9, 1665–1672.
Janin, J., Miller, S. and Chothia, C. (1988) J. Mol. Biol., 204, 155–164.
Kelly, M.J.S., Krieger, C., Ball, L.J., Yu, Y., Richter, G., Schmieder, P., Bacher, A. and Oschkinat, H. (1999) J. Biomol. NMR, 14, 79–83.
Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C.B. and Bax, A. (1995) Nat. Struct. Biol., 2, 768–776.
Kushlan, D.M. and LeMaster, D.M. (1993) J. Biomol. NMR, 3, 701–708.
LeMaster, D.M. (1989) Methods Enzymol., 177, 23–43.
Liu, X., Wang, H., Eberstadt, M., Schnuchel, A., Olejniczak, E.T., Meadows, R.P., Schkeryantz, J.M., Janowick, D.A., Harlan, J.E., Harris, E.A.S., Staunton, D.E. and Fesik, S.W. (1998) Cell, 95, 269–277.
Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1992) FEBS Lett., 314, 413–418.
Meadows, R.P., Olejniczak, E.T. and Fesik, S.W. (1994) J. Biomol. NMR, 4, 79–96.
Montelione, G.T., Lyons, B.A., Emerson, S.D. and Tashiro, M. (1992) J. Am. Chem. Soc., 114, 10974–10975.
Muchmore, S.W., Sattler, M., Liang, H., Meadows, R.P., Harlan, J.E., Yoon, H.S., Nettesheim, D., Chang, B.S., Thompson, C.B., Wong, S.-L., Ng, S.-C. and Fesik, S.W. (1996) Nature, 381, 335–341.
Nilges, M., Gronenborn, A.M., Brünger, A.T. and Clore, G.M. (1988) Protein Eng., 2, 27–38.
Ogata, C.M. (1998) Nat. Struct. Biol., 5 (Suppl S), 638–640.
Reisman, J., Jariel-Encontre, I., Hsu, V.L., Parello, J., Geiduschek, E.P. and Kearns, D.R. (1991) J. Am. Chem. Soc., 113, 2787–2789.
Sattler, M., Liang, H., Nettesheim, D., Meadows, R.P., Harlan, J.E., Eberstadt, M., Yoon, H.S., Shuker, S.B., Chang, B.S., Minn, A.J., Thompson, C.B. and Fesik, S.W. (1997) Science, 275, 983–986.
Shan, X., Gardner, K.H., Muhandiram, D.R., Rao, N.S., Arrowsmith, C.H. and Kay, L.E. (1996) J. Am. Chem. Soc., 118, 6570–6579.
Styles, P., Soffe, N.F., Scott, C.A., Cragg, D.A., Row, F., White, D.J. and White, P.C.J. (1984) J. Magn. Reson., 60, 397–404.
Terwilliger, T.C., Waldo, G., Peat, T.S., Newman, J.M., Chu, K. and Berendzen, J. (1998) Protein Sci., 7, 1851–1856.
Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore, G.M. and Bax, A. (1997) Nat. Struct. Biol., 4, 732–738.
Torchia, D.A., Sparks, S.W. and Bax, A. (1988) J. Am. Chem. Soc., 110, 2320–2321.
Venters, R.A., Metzler, W.J., Spicer, L.D., Mueller, L. and Farmer II, B.T. (1995) J. Am. Chem. Soc., 117, 9592–9593.
Vuister, G.W., Kim, S.J., Wu, C. and Bax, A. (1994) J. Am. Chem. Soc., 116, 9206–9210.
Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 11655–11666.
Yang, D., Venters, R.A., Mueller, G.A., Choy, W.Y. and Kay, L.E. (1999) J. Biomol. NMR, 14, 333–343.
Zarembinski, T.I., Hung, L.-W., Mueller-Dieckmann, H.-J., Kim, K.-K., Yokota, H., Kim, R and Kim, S.-H. (1998) Proc. Natl. Acad. Sci. USA, 95, 15189–15193.
Zhou, M.M., Huang, B., Olejniczak, E.T., Meadows, R.P., Shuker, S.B., Miyazaki, M., Trüb, T., Shoelson, S.E. and Fesik, S.W. (1996) Nat. Struct. Biol., 3, 388–393.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Medek, A., Olejniczak, E.T., Meadows, R.P. et al. An approach for high-throughput structure determination of proteins by NMR spectroscopy. J Biomol NMR 18, 229–238 (2000). https://doi.org/10.1023/A:1026544801001
Issue Date:
DOI: https://doi.org/10.1023/A:1026544801001