Abstract
A computer program (SHIFTX) is described which rapidly and accurately calculates the diamagnetic 1H, 13C and 15N chemical shifts of both backbone and sidechain atoms in proteins. The program uses a hybrid predictive approach that employs pre-calculated, empirically derived chemical shift hypersurfaces in combination with classical or semi-classical equations (for ring current, electric field, hydrogen bond and solvent effects) to calculate 1H, 13C and 15N chemical shifts from atomic coordinates. The chemical shift hypersurfaces capture dihedral angle, sidechain orientation, secondary structure and nearest neighbor effects that cannot easily be translated to analytical formulae or predicted via classical means. The chemical shift hypersurfaces were generated using a database of IUPAC-referenced protein chemical shifts – RefDB (Zhang et al., 2003), and a corresponding set of high resolution (<2.1 Å) X-ray structures. Data mining techniques were used to extract the largest pairwise contributors (from a list of ∼20 derived geometric, sequential and structural parameters) to generate the necessary hypersurfaces. SHIFTX is rapid (< 1 CPU second for a complete shift calculation of 100 residues) and accurate. Overall, the program was able to attain a correlation coefficient (r) between observed and calculated shifts of 0.911 (1Hα), 0.980 (13Cα), 0.996 (13Cβ), 0.863 (13CO), 0.909 (15N), 0.741 (1HN), and 0.907 (sidechain 1H) with RMS errors of 0.23, 0.98, 1.10, 1.16, 2.43, 0.49, and 0.30 ppm, respectively on test data sets. We further show that the agreement between observed and SHIFTX calculated chemical shifts can be an extremely sensitive measure of the quality of protein structures. Our results suggest that if NMR-derived structures could be refined using heteronuclear chemical shifts calculated by SHIFTX, their precision could approach that of the highest resolution X-ray structures. SHIFTX is freely available as a web server at http://redpoll.pharmacy.ualberta.ca.
Similar content being viewed by others
References
Baker, E.N. and Hubbard, R.E. (1984) Prog. Biophys. Mol. Biol., 44, 97-179.
Banci, L., Bertini, I., Savellini, G.G., Romagnoli, A., Turano, P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997) Prot. Struct. Funct. Gen., 29, 68-76.
Baxter, N.J. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 359-369.
Beger, R.D. and Bolton, P.H. (1997) J. Biomol. NMR, 10, 129-142.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne, P.E. (2000) Nucl. Acids Res., 28, 235-242.
Bjorndahl, T.C., Watson, M.S., Slupsky, C.M., Spyracopolous, L., Sykes, B.D. and Wishart, D.S. (2001) J. Biomol. NMR, 19, 187-188.
Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., 116, 8466-8469.
Buckingham, A.D. (1960) Can. J. Chem., 38, 300-307.
Case, D.A. (1998) Curr. Opin. Struct. Biol., 8, 624-630.
Case, D.A. (2000) Curr. Opin. Struct. Biol., 10, 197-203.
Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR, 13, 289-302.
Dalgarno, D.C., Levine, B.A. and Williams, R.J.P. (1983) Biosci. Rep., 3, 443-452.
de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-1496.
Derewenda, Z.S., Lee, L. and Derewenda, U. (1995) J. Mol. Biol. 252, 248-262.
Doreleijers, J.F., Rullmann, J.A. and Kaptein, R. (1998) J. Mol. Biol., 281, 149-164.
Gardner, K.H., Rosen, M.K. and Kay, L.E. (1997) Biochemistry, 36, 1389-1401.
Gibas, C.J. and Subramanian, S. (1996) Biophys. J. 71, 130-147.
Haigh, C.W. and Mallion, R.B. (1980) Progr. NMR Spectrosc., 13, 303-344.
Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neira, J.L. and Blanco, F.J. (1992) Magn. Reson. Chem., 30, 1012-1018.
Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.
Kabsch, W. and Sander, C. (1983) Biopolymers, 22, 2577-2637.
Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M. (1995a) J. Magn. Reson. B., 106, 92-96.
Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1995b) J. Magn. Reson., B107, 293-297.
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477-486.
Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341-348.
Le, H., Pearson, J.G., de Dios, A.C. and Oldfield, E. (1995). J. Am. Chem. Soc. 117, 3800-3807.
Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 1-23.
Osapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.
Osapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.
Osapay, K., Theriault, Y., Wright, P.E. and Case, D.A. (1994) J. Mol. Biol., 244, 183-197.
Pearson, J.T., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc. 119, 11941-11950.
Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217-236.
Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.
Wagner, G., Pardi, A. and Wüthrich, K. (1983) J. Am. Chem. Soc., 105, 5948.
Williamson, M.P. and Asakura, T. (1997) Meth. Mol. Biol., 60, 53-69.
Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 93-98.
Williamson, M.P., Kikuchi, J. and Asakura, T. (1995) J. Mol. Biol., 247, 541-546.
Wishart, D.S. and Case, D.A. (2001) Meth. Enzymol., 338, 3-34.
Wishart, D.S. and Nip, A.M. (1998) Biochem. Cell Biol., 76, 153-163.
Wishart, D.S. and Sykes, B.D. (1994) Meth. Enzymol., 239, 363-392.
Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995a) J. Biomol. NMR, 5, 67-81.
Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995b) J. Biomol. NMR, 6, 135-140.
Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-333.
Wishart, D.S., Willard, L., Richards, F.M. and Sykes, B.D. (1994) VADAR: A comprehensive program for protein structure evaluation. Version 1.2. Edmonton, Alberta, Canada.
Word, J.M., Lovell, S.C., Richardson, J.S. and Richardson, D.C. (1999) J. Mol. Biol., 285, 1733-1747.
Xu, X-P. and Case, D.A. (2001) J. Biomol. NMR, 21, 321-333.
Xu, X-P. and Case, D.A. (2002) Biopolymers, 65, 408-423.
Zhang, H., Neal, S. and Wishart, D.S. (2003) J. Biomol. NMR, 25, 173-195.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neal, S., Nip, A.M., Zhang, H. et al. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26, 215–240 (2003). https://doi.org/10.1023/A:1023812930288
Issue Date:
DOI: https://doi.org/10.1023/A:1023812930288