Skip to main content
Log in

Physicochemical Properties and Transport of Steroids Across Caco-2 Cells

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this work was to study the relevant physicochemical properties for the absorption of steroids.

Methods. Various physicochemical properties of steroids were calculated (molecular weight, ClogP, static polar surface area [PSA], etc.). Within this series of steroids, different pharmacological groups were defined. Based on the outcome of this survey, steroids were selected for the Caco-2 permeability study. The apparent permeability coefficients (Papp) were related to the calculated and measured physicochemical properties.

Results. Between the defined groups of steroids, ClogP was the most discriminative descriptor. The steroids were well transported over the cell monolayers and the Papp was independent of the concentration and the transport direction. No relationship was found with the PSA; however, the Papp showed a weak inverse correlation with ClogP.

Conclusions. The molecular descriptors and Papp values showed that all steroids are well transported. The small differences in the Papp values showed a weak inverse correlation with ClogP: the hydrophilic steroids (ClogP approximately 0-2) tend to diffuse faster over the cell monolayers compared with the more hydrophobic steroids (ClogP approximately 5). The relationship with ClogP suggests that partitioning of steroids between the biologic membrane and the surrounding aqueous phase is one of the main mechanisms for absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. G. Harman and L. E. Limbird. Goodman & Gilman's The Pharmacological Basis of Therapeutics. McGraw Hill, New York, 1996.

    Google Scholar 

  2. U. Norinder, T. Osterberg, and P. Artursson. Theoretical calculation and prediction of Caco-2 cell permeability using MolSurf parameterization and PLS statistics. Pharm. Res. 14:1786-1791 (1997).

    Google Scholar 

  3. M. C. Gres, B. Julian, M. Bourrie, V. Meunier, C. Roques, M. Berger, X. Boulenc, and Y. Berger. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parenteral Caco-2 cell line. Pharm. Res. 15:726-733 (1998).

    Google Scholar 

  4. M. Yazdanian, S. L. Glyn, J. L. Wright, and A. Hawi. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm. Res. 15:1490-1494 (1998).

    Google Scholar 

  5. S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm. Res. 14:763-766 (1997).

    Google Scholar 

  6. E. Duizer. Permeability and Modulation of the Tntestinal Epithelial Barrier in Vitro, Ph.D. Thesis, Wageningen Agricultural University, The Netherlands, 1999.

    Google Scholar 

  7. P. Schmiedlin-Ren, K. E. Thummel, J. M. Fischer, M. F. Paine, K. S. Lown, and P. B. Watkins. Expression of enzymatically active CYP3A4 by Caco-2 cells grown on extracellular matrix-coated permeable supports in the presence of 1alpha,25-dihydroxyvitamin D3. Mol. Pharmacol. 51:741-754 (1997).

    Google Scholar 

  8. S. D. Raeissi, I. J. Hidalgo, J. Segura-Aguilar, and P. Artursson. Interplay between CYP3A-mediated metabolism and polarized efflux of terfenadine and its metabolites in intestinal epithelial Caco-2 (TC7) cell monolayers. Pharm. Res. 16:625-632 (1999).

    Google Scholar 

  9. F. Labrie, V. Luu-The, and S. X. Lin. The key role of 17beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 62:148-158 (1997).

    Google Scholar 

  10. S. Andersson and N. Moghrabi. Physiology and molecular genetics of 17beta-hydroxysteroid dehydrogenases. Steroids 62:143-147 (1997).

    Google Scholar 

  11. J. Kelder, P. D. Grootenhuis, D. M. Bayada, L. P. Delbressine, and J. P. Ploemen. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm. Res. 16:1514-1519 (1999).

    Google Scholar 

  12. F. J. Zeelen. Medicinal Chemistry of Steroids, Elsevier Science Publishers BV, Amsterdam, 1990.

    Google Scholar 

  13. U. Kragh-Hansen. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33:17-53 (1981).

    Google Scholar 

  14. S. Watanabe and T. Sato. Effects of free fatty acids on the binding of bovine and human serum albumin with steroid hormones. Biochim. Biophys. Acta 1289:385-396 (1996).

    Google Scholar 

  15. M. E. Baker. Albumin's role in steroid hormone action and the origin of vertebrates: is albumin an essential protein? FEBS Lett. 439:9-12 (1998).

    Google Scholar 

  16. J. M. Fischer, S. A. Wrighton, J. C. Calamia, D. D. Shen, and K. L. Kunze. Midazolam metabolism by modified Caco-2 monolayers: effects of extracellular protein binding. J. Pharmacol. Exp. Ther. 289:1143-1150 (1999).

    Google Scholar 

  17. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda. Optimized conditions for prediction of intestinall drug permeability using Caco-2 cells. Eur. J. Pharm. Sci. 10:195-204 (2000).

    Google Scholar 

  18. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeny. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 23:3-25 (1997).

    Google Scholar 

  19. A. Lampen, A. Bader, T. Bestmann, M. Winkler, L. Witte, and J. T. Borlak. Catalytic activities, protein-and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. Xenobiotica 28:429-441 (1998).

    Google Scholar 

  20. T. Prueksaritanont, L. M. Gorham, J. H. Hochmann, L. O. Tran, and K. P. Vyas. Comparative studies of drug-metabolizing enzymes in dog, monkey, and human small intestines, and in Caco-2 cells. Drug Metab. Dispos. 24:634-642 (1996).

    Google Scholar 

  21. C. H. M. Versantvoort, R. C. A. Onderwater, E. Duizer, J. J. M. Van de Sandt, A. J. Gilde, and J. P. Groten. Monolayers of IEC-18 cells as an in vitro model for screening the passive transcellular and paracellular transport across the intestinal barrier: comparison of active and passive transport with the human colon carcinoma Caco-2 cell line. Environ. Toxicol. Pharmacol. 11:335-344 (2002).

    Google Scholar 

  22. R. Sandstrom, A. Karlsson, L. Knutson, and H. Lennernas. Jejunal absorption and metabolism of R/S verapamil in humans. Pharm. Res. 15:856-862 (1998).

    Google Scholar 

  23. G. Ecker, M. Huber, D. Schmid, and P. Chiba. The importance of a nitrogen atom in modulators of multidrug resistance. Mol. Pharmacol. 56:791-796 (1999).

    Google Scholar 

  24. S. Ernest and E. Bello-Reuss. P-glycoprotein functions and substrates: possible roles of MDR1 gene in the kidney. Kidney Int. 65(Suppl):S11-S17 (1998).

    Google Scholar 

  25. K. M. Barnes, B. Dickstein, G. B. Cutler Jr., T. Fojo, and S. E. Bates. Steroid transport, accumulation, and antagonism of P-glycoprotein in multidrug resistant cells. Biochemistry 35:4820-4827 (1996).

    Google Scholar 

  26. G. Deliconstantinos and S. Fotiou. Sex steroid and prostaglandin interactions upon the purified rat myometrial plasma membranes. Mol. Cell. Endocrinol. 45:149-156 (1986).

    Google Scholar 

  27. H. Saitoh, M. Hatakeyama, O. Eguchi, M. Oda, and M. Takada. Involvement of intestinal P-glycoprotein in the restricted absorption of methylprednisolone from rat small intestine. J. Pharm. Sci. 87:73-75 (1998).

    Google Scholar 

  28. K. A. Lentz, J. W. Polli, S. A. Wring, J. E. Humphreys, and J. E. Polli. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm. Res. 17:1456-1460 (2000).

    Google Scholar 

  29. S. Winiwarter, N. M. Bonham, F. Ax, A. Hallberg, H. Lennernas, and A. Karlen. Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J. Med. Chem. 41:4939-4949 (1998).

    Google Scholar 

  30. T. I. Oprea and J. Gottfries. Toward minimalistic modeling of oral drug absorption. J. Mol. Graphics Mod. 17:261-274 (1999).

    Google Scholar 

  31. H. van de Waterbeemd, G. Camenisch, G. Folkers, and O. A. Raevsky. Estimation of Caco-2 cell permeability using calculated molecular descriptors. Quant. Struct. Act. Relat. 15:480-490 (1996).

    Google Scholar 

  32. L. Stryer. Biochemistry, W.H. Freeman and Company, New York, 1995.

    Google Scholar 

  33. H. R. Lamche, P. T. Silberstein, A. C. Knabe, D. D. Thomas, H. S. Jacob, and D. E. Hammerschmidt. Steroids decrease granulocyte membrane fluidity, while phorbol ester increases membrane fluidity. Studies using electron paramagnetic resonance. Inflammation 14:61-70 (1990).

    Google Scholar 

  34. V. B. Mahesh, D. W. Brann, and L. B. Hendry. Diverse modes of action of progesterone and its metabolites. J. Steroid Biochem. Mol. Biol. 56:209-219 (1996).

    Google Scholar 

  35. G. A. Golden, R. P. Mason, T. N. Tulenko, G. S. Zubenko, and R. T. Rubin. Rapid and opposite effects of cortisol and estradiol on the human erythrocyte Na+,K+-ATPase activity: relationship to steroid intercalation into the cell membrane. Life Sci. 65:1247-1255 (1999).

    Google Scholar 

  36. D. B. Goldstein. The effects of drugs on membrane fluidity. Annu. Rev. Pharmacol. Toxicol. 24:43-64 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fried Faassen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faassen, F., Kelder, J., Lenders, J. et al. Physicochemical Properties and Transport of Steroids Across Caco-2 Cells. Pharm Res 20, 177–186 (2003). https://doi.org/10.1023/A:1022210801734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022210801734