Skip to main content

Performance of a neural-network-based determination of amino acid class and secondary structure from 1H-15N NMR data

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A neural network which can determine both amino acid class andsecondary structure using NMR data from 15N-labeled proteinsis described. We have included nitrogen chemical shifts,3JHNHα coupling constants, α-protonchemical shifts, and side-chain proton chemical shifts as input to athree-layer feed-forward network. The network was trained with 456 spinsystems from several proteins containing various types of secondarystructure, and tested on human ubiquitin, which has no sequence homologywith any of the proteins in the training set. A very limited set of data,representative of those from a TOCSY-HSQC and HNHA experiment, was used.Nevertheless, in 60% of the spin systems the correct amino acid classwas among the top two choices given by the network, while in 96% ofthe spin systems the secondary structure was correctly identified. Theperformance of this network clearly shows the potential of the neuralnetwork algorithm in the automation of NMR spectral analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrec, M., Hill, R.B. and Prestegard, J.H. (1995) Protein Sci., 4, 983-;993.

    Google Scholar 

  • Bartels, C., Xia, T.-h., Billeter, M., Güntert, P. and Wüthrich, K. (1995) J. Biomol. NMR, 6, 1-;10.

    Google Scholar 

  • Braun, D., Wider, G. and Wüthrich, K. (1994) J. Am. Chem. Soc., 116, 8466-;8469.

    Google Scholar 

  • de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-;1496.

    Google Scholar 

  • Emerson, S.D., Waugh, D.S., Scheffler, J.E., Tsao, K.L., Prinzo, K.M. and Fry, D.C. (1994) Biochemistry, 33, 7745-;7752.

    Google Scholar 

  • Friedrichs, M.S., Mueller, L. and Wittekind, M. (1994) J. Biomol. NMR, 4, 703-;726.

    Google Scholar 

  • Ghose, R., Geiger, O. and Prestegard, J.H. (1996) FEBS Lett., 388, 66-;72.

    Google Scholar 

  • Glushka, J., Lee, M., Coffin, S. and Cowburn, D. (1989) J. Am. Chem. Soc., 111, 7716-;7722.

    Google Scholar 

  • Glushka, J., Lee, M., Coffin, S. and Cowburn, D. (1990) J. Am. Chem. Soc., 112, 2843.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-;204.

    Google Scholar 

  • Hare, B.J. and Prestegard, J.H. (1994) J. Biomol. NMR, 4, 35-;46.

    Google Scholar 

  • Hill, R.B., Flanagan, J.M. and Prestegard, J.H. (1995) Biochemistry, 34, 5587-;5596.

    Google Scholar 

  • Holak, T.A. and Prestegard, J.H. (1986) Biochemistry, 25, 5766-;5774.

    Google Scholar 

  • Karplus, M. (1959) J. Chem. Phys., 30, 11-;15.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663-;10665.

    Google Scholar 

  • Kuboniwa, H., Grzesiek, S., Delaglio, F. and Bax, A. (1994) J. Biomol. NMR, 4, 871-;878.

    Google Scholar 

  • Le, H. and Oldfield, E. (1994) J. Biomol. NMR, 4, 341-;348.

    Google Scholar 

  • Marion, D., Driscoll, P.C., Kay, L.E., Wingfield, P.T., Bax, A., Gronenborn, A.M. and Clore, G.M. (1989) Biochemistry, 28, 6150-;6156.

    Google Scholar 

  • Masters, T. (1993) Practical Neural Network Recipes in C++, Academic Press, New York, NY, U.S.A.

    Google Scholar 

  • McClelland, J.L. and Rumelhart, D.E. (1988) Explorations in Parallel Distributed Processing, MIT Press, Cambridge, MA, U.S.A.

    Google Scholar 

  • Meadows, R.P., Olejniczak, E.T. and Fesik, S.W. (1994) J. Biomol. NMR, 4, 79-;96.

    Google Scholar 

  • Mittard, V., Morelle, N., Brutscher, B., Simorre, J.-P. and Marion, D. (1995) Eur. J. Biochem., 229, 473-;485.

    Google Scholar 

  • Neidig, K.-P., Geyer, M., Goerler, A., Antz, C., Saffrich, R., Beneicke, W. and Kalbitzer, H.R. (1995) J. Biomol. NMR, 6, 255-;270.

    Google Scholar 

  • Olson Jr., J.B. and Markley, J.L. (1994) J. Biomol. NMR, 4, 385-;410.

    Google Scholar 

  • Oschkinat, H., Holak, T.A. and Cieslar, C. (1991) Biopolymers, 31, 699-;712.

    Google Scholar 

  • Van de Ven, F.J.M. (1990) J. Magn. Reson., 86, 633-;644.

    Google Scholar 

  • Vuister, G.W. and Bax, A. (1993) J. Am. Chem. Soc., 115, 7772-;7777.

    Google Scholar 

  • Wagner, G. and Wüthrich, K. (1982) J. Mol. Biol., 155, 347-;366.

    Google Scholar 

  • Wang, A.C., Grzesiek, S., Tschudin, R., Lodi, P.J. and Bax, A. (1995) J. Biomol. NMR, 5, 376-;382.

    Google Scholar 

  • Weber, P.L., Brown, S.C. and Mueller, L. (1987) Biochemistry, 26, 7282-;7290.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-;333.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, J.H., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, 6, 135-;140.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY, U.S.A.

    Google Scholar 

  • Zimmerman, D., Kulikowski, C., Wang, L., Lyons, B. and Montelione, G.T. (1994) J. Biomol. NMR, 4, 241-;256.

    Google Scholar 

  • Zimmerman, D. and Montelione, G.T. (1995) Curr. Opin. Struct. Biol., 5, 664-;673.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, K., Andrec, M., Heald, S. et al. Performance of a neural-network-based determination of amino acid class and secondary structure from 1H-15N NMR data. J Biomol NMR 10, 45–52 (1997). https://doi.org/10.1023/A:1018340603528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018340603528