Abstract
Drugs that bind with high affinity and to a significant extent (relative to dose) to a pharmacologic target such as an enzyme, receptor, or transporter may exhibit nonlinear pharmacokinetic (PK) behavior. Processes such as receptor-mediated endocytosis may result in drug elimination. A general PK model for characterizing such behavior is described and explored through computer simulations and applications to several therapeutic agents. Simulations show that model predicted plasma concentration vs. time profiles are expected to be polyexponential with steeper distribution phases for lower doses and similar terminal disposition phases. Noncompartmental parameters always show apparent Vss and CLD decreasing with dose, but apparent clearance decreases only when the binding process produces drug elimination. The proposed model well captured the time-course of drug concentrations for the aldose reductase inhibitor imirestat, the endothelin receptor antagonist bosentan, and recombinant human interferon-β 1a. This type of model has a mechanistic basis and considerable utility for fully describing the kinetics for various doses of relevant drugs.
Similar content being viewed by others
REFERENCES
G. Levy. Pharmacologic target-mediated drug disposition. Clin. Pharmacol. Ther. 56:248–252 (1994).
A. E. Till, H. J. Gomez, M. Hichens, J. A. Bolognese, W. R. McNabb, B. A. Brooks, F. Noormohamed, and A. F. Lant. Pharmacokinetics of repeated single oral doses of enalapril maleate (MK-421) in normal volunteers. Biopharm. Drug Dispos. 5:273–280 (1984).
K. R. Lees, A. W. Kelman, J. L. Reid, and B. Whiting. Pharmacokinetics of an ACE inhibitor, S-9780, in man: evidence of tissue binding. J. Pharmacokinet. Biopharm. 17:529–550 (1989).
R. J. MacFadyen, K. R. Lees, and J. L. Reid. Studies with low dose intravenous diacid ACE inhibitor (perindoprilat) infusions in normotensive male volunteers. Br. J. Clin. Pharmacol. 34:115-121 (1992).
R. Klausner, J. V. Renswoude, J. Harford, C. Wofsy, and B. Goldstein. Mathematical modeling of receptor-mediated endocytosis. In I. Pastan and M. C. Willingham (eds.), Endocytosis, Plenum Press, New York, 1985, pp. 259–279.
V. L. Shepherd. Intracellular pathways and mechanisms of sorting in receptor-mediated endocytosis. Trends Pharmacol. Sci. 10:458–462 (1989).
Y. Sugiyama and M. Hanano. Receptor-mediated transport of peptide hormones and its importance in the overall hormone disposition in the body. Pharm. Res. 6:192-202 (1989).
M. S. Brown, R. G. Anderson, and J. L. Goldstein. Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell. 32:663–667 (1983).
I. Pastan and M. C. Willingham. The pathway of endocytosis. In I. Pastan and M. C. Willingham (eds.), Endocytosis, Plenum Press, New York, 1985, pp. 1–44.
J. E. Rothman and F. T. Wieland. Protein sorting by transport vesicles. Science. 272:227–234 (1996).
M. Blick, S. A. Sherwin, M. Rosenblum, and J. Gutterman. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 47:2986–2989 (1987).
D. Z. D'Argenio and A. Schumitzky. ADAPT II user's guide. Biomedical Simulations Resource, Los Angeles (1997).
M. Gibaldi and D. Perrier. Pharmacokinetics, Marcel Dekker, Inc., New York, 1982.
P. Veng-Pedersen and W. R. Gillespie. Single pass mean residence time in peripheral tissues: a distribution parameter intrinsic to the tissue affinity of a drug. J. Pharm. Sci. 75:1119–1126 (1986).
R. Brazzell, P. Mayer, R. Dobbs, P. McNamara, R. Teng, and J. Slattery. Dose-dependent pharmacokinetics of the aldose reductase inhibitor imirestat in man. Pharm. Res. 8:112–118 (1991).
C. Weber, R. Schmitt, H. Birnboeck, G. Hopfgartner, S. van Marle, P. Peeters, J. Jonkman, and C. Jones. Pharmacokinetics and pharmacodynamics of the endothelin-receptor antagonist bosentan in healthy human subjects. Clin. Pharmacol. Ther. 60:124–137 (1996).
P. A. Buchwalder, T. Buclin, I. Trinchard, A. Munafo, and J. Biollaz. Pharmacokinetics and pharmacodynamics of IFN-β1a in healthy volunteers. J. Interferon Cytokine Res. 20:857–866 (2000).
S. Oie, T. W. Guentert, and T. N. Tozer. Effect of saturable binding on the pharmacokinetics of drugs: a simulation. J. Pharm. Pharmacol. 32:471–477 (1980).
J. H. Lin. Dose-dependent pharmacokinetics: experimental observations and theoretical considerations. Biopharm. Drug Dispos. 15:1–31 (1994).
W. J. Jusko. Guidelines for collection and analysis of pharmacokinetic data. In W. E. Evans, J. J. Schentag, and W. J. Jusko (eds.), Applied Pharmacokinetics, Applied Therapeutics, Inc., Vancouver, 1992, Ch. 2.
J. G. Wagner. A new generalized nonlinear pharmacokinetic model and its implications. In J. G. Wagner (ed.), Biopharmaceutics and Relevant Pharmacokinetics, Drug Intelligence Publications, Hamilton, 1971, pp. 302–317.
H. Y. Cheng and W. J. Jusko. Mean residence time concepts for pharmacokinetic systems with nonlinear drug elimination described by the Michaelis–Menten equation. Pharm. Res. 5:156–164 (1988).
J. Y. Chien, C. R. Banfield, R. K. Brazzell, P. R. Mayer, and J. T. Slattery. Saturable tissue binding and imirestat pharmacokinetics in rats. Pharm. Res. 9:469–973 (1992).
M. Clozel. Endothelin receptor antagonists: current status and perspectives. J. Cardioû asc. Pharmacol. 35:S65–S68 (2000).
M. Clozel et al., Pharmacological characterization of bosentan, a new potent orally active nonpeptide endothelin receptor antagonist. J. Pharmacol. Exp. Ther. 270:228–235 (1994).
C. Weber, R. Gasser, and G. Hopfgartner. Absorption, excretion, and metabolism of the endothelin receptor antagonist bosentan in healthy male subjects. Drug Metab. Dispos. 27:810–815 (1999).
C. Weber, R. Schmitt, H. Birnboeck, G. Hopfgartner, H. Eggers, J. Meyer, S. van Marle, H. W. Viischer, and J. H. Jonkman. Multiple-dose pharmacokinetics, safety, and tolerability of bosentan, an endothelin receptor antagonist, in healthy male volunteers. J. Clin. Pharmacol. 39:703–714 (1999).
J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker. Multiple Sclerosis. NEJM 343:938–952 (2000).
J. Chiang, C. A. Gloff, C. N. Yoshizawa, and G. J. Williams. Pharmacokinetics of recombinant human interferon-βser in healthy volunteers and its effect on serum neopterin. Pharm. Res. 10:567–572 (1993).
P. Salmon, J. Y. Le Cotonnec, A. Galazka, A. Abdul-Ahad, and A. Darragh. Pharmacokinetics and pharmacodynamics of recombinant human interferon-βin healthy male volunteers. J. Interferon Cytokine Res. 16:759–764 (1996).
R. Wills. Clinical pharmacokinetics of interferons. Clin. Pharmacokinet. 19:390–399 (1990).
J. Alam, S. Goelz, P. Rioux, J. Scaramucci, W. Jones, A. McAllister, M. Campion, and M. Rogge. Comparative pharmacokinetics and pharmacodynamics of two recombinant human interferon-β1a (IFN-β1a) products administered intramuscularly in healthy male and female volunteers. Pharm. Res. 14:546–549 (1997).
C. Gloff and R. Wills. Pharmacokinetics and metabolism of therapeutic cytokines. In B. Ferraiolo, M. Mohler, and C. Gloff, (eds.), Protein Pharmacokinetics and Metabolism, Plenum Press, New York, 1992, pp. 127–150.
S. Pestka, J. A. Langer, K. C. Zoon, and C. E. Samuel. Interferons and their actions. Annu. Rev. Biochem. 56:727–777 (1987).
F. M. Gengo, J. J. Schentag, and W. J. Jusko. Pharmacokinetics of capacity-limited tissue distribution of methicillin in rabbits. J. Pharm. Sci. 73:867–873 (1984).
E. Snoeck, P. Jacqmin, A. Peer, and M. Danhof. A combined specific target site binding and pharmacokinetic model to explore the non-linear disposition of draflazine. J. Pharmacokinet. Biopharm. 27:257–280 (1999).
L. Gianni, C. M. Kearns, A. Giani, G. Capri, L. Vigano, A. Lacatelli, G. Bonadonna, and M. J. Egorin. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/ pharmacodynamic relationships in humans. J. Clin. Oncol. 13:180–190 (1995).
J. W. Black and P. Leff. Operational models of pharmacological agonism. Proc. R. Soc. Lond. B. Biol. Sci. 220:141–162 (1983).
N. L. Dayneka, V. Garg, and W. J. Jusko. Comparison of four basic models of indirect pharmacodynamic responses. J. Pharmacokinet. Biopharm. 21:457–478 (1993).
A. Sharma, W. F. Ebling, and W. J. Jusko. Precursor-dependent indirect pharmacodynamic response model for tolerance and rebound phenomena. J. Pharm. Sci. 87:1577–1584 (1998).
Y. N. Sun and W. J. Jusko. Transit compartments versus gamma distribution function to model signal transduction processes in pharmacodynamics. J. Pharm. Sci. 87:732–737 (1998).
D. E. Mager and W. J. Jusko. Pharmacodynamic modeling of time-dependent transduction systems. Clin. Pharmacol. Ther. 70:210–216 (2001).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mager, D.E., Jusko, W.J. General Pharmacokinetic Model for Drugs Exhibiting Target-Mediated Drug Disposition. J Pharmacokinet Pharmacodyn 28, 507–532 (2001). https://doi.org/10.1023/A:1014414520282
Issue Date:
DOI: https://doi.org/10.1023/A:1014414520282