Abstract
A database of peptide chemical shifts, computed at the density functional level, has been used to develop an algorithm for prediction of 15N and 13C shifts in proteins from their structure; the method is incorporated into a program called SHIFTS (version 4.0). The database was built from the calculated chemical shift patterns of 1335 peptides whose backbone torsion angles are limited to areas of the Ramachandran map around helical and sheet configurations. For each tripeptide in these regions of regular secondary structure (which constitute about 40% of residues in globular proteins) SHIFTS also consults the database for information about sidechain torsion angle effects for the residue of interest and for the preceding residue, and estimates hydrogen bonding effects through an empirical formula that is also based on density functional calculations on peptides. The program optionally searches for alternate side-chain torsion angles that could significantly improve agreement between calculated and observed shifts. The application of the program on 20 proteins shows good consistency with experimental data, with correlation coefficients of 0.92, 0.98, 0.99 and 0.90 and r.m.s. deviations of 1.94, 0.97, 1.05, and 1.08 ppm for 15N, 13Cα, 13Cβ and 13C′, respectively. Reference shifts fit to protein data are in good agreement with `random-coil' values derived from experimental measurements on peptides. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.
Similar content being viewed by others
References
Ando, I., Kameda, T., Asakawa, N., Kuroki, S. and Kurosu, H. (1998) J. Mol. Struct., 441, 213-230.
Becke, A.D. (1993) J. Chem. Phys., 98, 5648-5652.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, F., Bryce, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535-542.
Cornilescu, G., Delaglio, F. and Bax, A. (1999) J. Biomol. NMR 13, 289-302.
Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998) J. Am. Chem. Soc., 120, 6836.
de Dios, A.C. (1996) Prog. NMR Spectrosc., 97, 229-278.
de Dios, A.C., Pearson, J.G. and Oldfield, E. (1993) Science, 260, 1491-1496.
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Gill, P.M.W., Johnson, B.G., Robb, M.A., Cheeseman, J.R., Keith, T., Petersson, G.A., Montgomery, J.A., Raghavachari, K., Al-Laham, M.A., Zakrzewski, V.G., Ortiz, J.V., Foresman, J.B., Cioslowski, J., Stefanov, B.B., Nanayakkara, A., Challacombe, M., Peng, C.Y., Ayala, P.Y., Chen,W., Wong, M.W., Andres, J.L., Replogle, E.S., Gomperts, R., Martin, R.L., Fox, D.J., Binkley, J.S., Defrees, D.J., Baker, J., Stewart, J.P., Head-Gordon, M., Gonzalez, C. and Pople, J.A. (1998) Gaussian 98, Reversion A.6, Gaussian, Inc., Pittsburgh, PA.
Gronwald, W., Boyko, R.F., Sönnichsen, R.D., Wishart, D.S. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 165-179.
Herranz, J., Gonzalez, C., Rico, M., Nieto, J.L., Santoro, J., Jimenez, M.A., Bruix, M., Neita, J.L. and Blanco, F.J. (1992) Magn. Reson. Chem., 30, 1012-1018.
Iwadate, M., Asakura, T. and Williamson, M.P. (1999) J. Biomol. NMR, 13, 199-211.
Lee, C., Yang, W. and Parr, R. (1988) Phys. Rev., B37, 785-789.
Macke, T and Case, D.A. (1998) In Molecular Modeling of Nucleic Acids, N.B. Leontis and J. SantaLucia (Eds.), American Chemical Society, Washington, pp. 379-393.
Miehlich, B., Savin, A., Stoll, H. and Preuss, H. (1989) Chem. Phys. Lett., 157, 200.
Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436-9444.
Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.
Osawa, M., Swindlls, M.B., Tanikawa, J., Tanaka, T., Mase, T., Furuya, T. and Ikura, M. (1998) J. Mol. Biol., 276, 165-176.
Pearson, J.G., Le, H., Sanders, L.K., Godbout, N., Havlin, R.H. and Oldfield, E. (1997) J. Am. Chem. Soc., 119, 11941-11950.
Pople, J.A., Head-Gordon, M., Fox, D. J., Raghavachari, K. and Curtiss, L.A. (1989) J. Chem. Phys., 93, 2537.
Ramage, R., Green, J., Muir, T.W., Ogunjobi, O.M., Love, S. and Shaw, K. (1994) Biochem. J., 299, 151.
Schwarzinger, S., Kroon, G.J.A, Foss, T.R., Chung, J., Wright, P.E. and Dyson, H.J. (2000) J. Biomol. NMR, 18, 43-48.
Seavey, B., Farr, E.A., Westler, W.M. and Markley, J.A. (1991) J.Biomol. NMR, 1, 217-236.
Sitkoff, D. and Case, D.A. (1997) J. Am. Chem. Soc., 119, 12262-12273.
Spera, S. and Bax, A. (1991) J. Am. Chem. Soc., 113, 5490-5492.
Szilágyi, L. (1995) Prog. NMR Spectrosc., 27, 325-443.
Szilágyi, L. and Jardetzky, O. (1989) J. Magn. Reson., 83, 441.
Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol. Biol., 194, 531.
Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson., B101, 63-71.
Williamson, M.P., Asakura, T., Nakamura, E. and Demura, M. (1992) J. Biomol. NMR, 2, 83-98.
Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311.
Wishart, D.S., Watson, M.S., Boyko, R.F. and Sykes, B.D. (1997) J. Biomol. NMR, 10, 329-336.
Wolinski, K., Hilton, J.F. and Pulay, P. (1990) J. Am. Chem. Soc., 112, 8251.
Xu, X.-P and Case, D.A. (2001) submitted.
Yamazaki, T., Hinck, A.P., Wang, Y.-X., Nicholson, L.K., Torchia, D.A., Wingfield, P.T., Stahl, S.J., Kaufman, J.D., Chang, C.-H., Domaille, P.J. and Lam, P.Y.S. (1996) Prot. Sci., 5, 495-506.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Xu, XP., Case, D.A. Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21, 321–333 (2001). https://doi.org/10.1023/A:1013324104681
Issue Date:
DOI: https://doi.org/10.1023/A:1013324104681