Skip to main content
Log in

Exploiting exopolysaccharides from lactic acid bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Microbial exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) play a major role in the manufacturing of fermented dairy products. EPS production is characterized by a large variety in terms of quantity, chemical composition, molecular size, charge, type of sidechains and rigidity of the molecules. Monosaccharide unit's composition, linkages, charge and size determine the EPS' intrinsic properties and their interactions with other milk constituents. EPSs contribute to texture, mouthfeel, taste perception and stability of the final product. Furthermore, it was reported that EPS from food grade organisms, particularly LAB, have potential as food additives and as functional food ingredients with both health and economic benefits. A better understanding of structure-function relationships of EPS in a dairy food matrix and of EPS biosynthesis remain two major challenges for further applications of EPS and the engineering of functional polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkman T, Bozoglu TF& Özilgen M (1990) Mixed culture growth kinetics of Streptococcus thermophilus and Lactobacillus bulgaricus. Enzyme Microbial Technol. 12: 138–140.

    Google Scholar 

  • Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezem M& de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11: 723–732.

    Google Scholar 

  • Bouzar F, Cerning J& Desmazeaud M (1997) Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80: 2310–2317.

    Google Scholar 

  • Breton C, Mucha J& Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83: 713–718.

    Google Scholar 

  • Cerning J, Bouillanne C, Desmazeaud MJ& Landon M (1986) Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625–628.

    Google Scholar 

  • Cerning J, Bouillanne C, Landon M& Desmazeaud MJ (1990) Comparison of exocellular polysaccharide production by thermophilic acid bacteria. Science des Aliments 10: 443–451.

    Google Scholar 

  • Cerning J, Bouillanne C, Landon M& Desmazeaud MJ (1992) Isolation and characterization of exopolysaccharides from slimeforming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692–699.

    Google Scholar 

  • Cerning J& Marshall VME (1999) Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Results Develop. Microbiol. 3: 195–209.

    Google Scholar 

  • Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud MJ& Topisirovic L (1994) Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914–3919.

    Google Scholar 

  • Christiansen PS, Madeira AIMR& Edelstein D (1999) The use of ropy milk as stabilizer in the manufacture of ice cream. Milchwissenschaft 54: 138–140.

    Google Scholar 

  • Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ& Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061–1066.

    Google Scholar 

  • Cieslewicz MJ, Kasper DL, Wang Y& Wessels MR (2001) Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139–146.

    Google Scholar 

  • Crescenzi V (1995) Microbial polysaccharides of applied interest: on going research activities in Europe. Biotechnol. Progr. 11: 251–259.

    Google Scholar 

  • Cummings JH& Englyst HN (1995) Gastrointestinal effects of food carbohydrate. Am. J Clin. Nutr. 61: 938–945.

    Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F&and Degeest B. (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707.

    Google Scholar 

  • De Vuyst L& Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.

    Google Scholar 

  • Duboc P, Fischer M&Vincent SJF (2002) Characterization of gluconacetan, a new texturizing carbohydrate polymer: a basis for a structure-function relationship in polysaccharides. Submitted for publication.

  • Duboc P& Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.

    Google Scholar 

  • Escalante A, Wacher-Rodarte C, Garcia-Garibay M& Farrés A (1998) Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. J. Appl. Microbiol. 84: 108–114.

    Google Scholar 

  • Faber EJ, van Kuik JA, Kamerling JP& Vliegenthart JF (2002) Modeling of the structure in aqueous solution of the exopolysaccharide produced by Lactobacillus helveticus 766. Biopolymers 63: 66–76.

    Google Scholar 

  • Faber EJ, Zoon P, Kamerling JP& Vliegenthart JF (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310: 269–276.

    Google Scholar 

  • Gancel F& Novel G (1994) Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. Conditions of production. J. Dairy Sci. 77: 685–688.

    Google Scholar 

  • German B, Schiffrin EJ, Reniero R, Mollet B, Pfeifer A& Neeser JR (1999) The development of functional foods: lessons from the gut. Trends Biotechnol. 17: 492–499.

    Google Scholar 

  • Germond JE, Delley M, D'Amico N& Vincent SJ (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.

    Google Scholar 

  • Grobben GJ, Sikkema J, Smith MR& de Bont JAM (1995) Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103–107.

    Google Scholar 

  • Harris PJ& Ferguson LR (1993) Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Res. 290: 97–110.

    Google Scholar 

  • Hess SJ, Roberts RF& Ziegler GR (1997) Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. J. Dairy Sci. 80: 252–263.

    Google Scholar 

  • Jay AJ, Colquhoun IJ, Ridout MJ, Brownsey GJ, Morris VJ, Fialho AM, Leito JH& Sa-Correira I (1998) Analysis of structure and function of gellans with different substitution patterns. Carbohydr. Polym. 35: 179–188.

    Google Scholar 

  • Jolly L, Newell J, Porcelli I, Vincent SJF&Stingele F (2002) Lactobacillus helveticus glycosyltransferases: from genes to carbohydrate synthesis. Glycobiol. In press.

  • Jolly L& Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int. Dairy J. 11: 733–745.

    Google Scholar 

  • Kalab M, Allan-Wojtas P& Phipps-Todd BE (1983) Development of microstructure in set-style nonfat yoghurt. A review. Food Microstructure 2: 51–66.

    Google Scholar 

  • Kojic M, Vujcic M, Banina A, Cocconcelli P, Cerning J& Topisirovic L (1992) Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ. Microbiol. 58: 4086–4088.

    Google Scholar 

  • Kosikowski FV (1982) Cheese and Fermented Milk Foods. 2nd edn.

  • Levander F, Svensson M& Radstrom P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl. Environ. Microbiol. 68: 784–790.

    Google Scholar 

  • Looijesteijn PJ, Boels IC, Kleerebezem M& Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003–5008.

    Google Scholar 

  • Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ& Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl. Environ. Microbiol. 64: 2147–2151.

    Google Scholar 

  • Macura D& Townsley PM (1984) Scandinavian ropy milk: identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67: 735–744.

    Google Scholar 

  • McMahon DJ, Oberg CJ& McManus W (1993) Functionality of mozzarella cheese. Austr. J. Dairy Technol. 48: 99–104.

    Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM& Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 675–685.

    Google Scholar 

  • Moreira LM, Becker JD, Puhler A& Becker A (2000) The Sinorhizobium meliloti ExpE1 protein secreted by a type I secretion system involving ExpD1 and ExpD2 is required for biosynthesis or secretion of the exopolysaccharide galactoglucan. Microbiology 146: 2237–2248.

    Google Scholar 

  • Mozzi F, Olivier G, Savyo de Giori GS& Font de Valdez GF (1995) Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50: 80–82.

    Google Scholar 

  • Mozzi F, Savyo de Giori GS, Olivier G& Font de Valdez GF (1994) Effect of culture pH on the growth characteristics and polysaccharide production by Lactobacillus casei. Milchwissenschaft 49: 667–670.

    Google Scholar 

  • Paton AW, Morona R& Paton JC (2000) A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat. Med. 6: 265–270.

    Google Scholar 

  • Perry DB, McMahon DJ& Oberg CJ (1997) Effect of exopolysaccharide producing cultures on moisture retention in low-fat mozzarella cheese. J. Dairy Sci. 80: 799–805.

    Google Scholar 

  • Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG& Strynadka NC (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8: 166–175.

    Google Scholar 

  • Petry S, Furlan S, Crepeau MJ, Cerning J& Desmazeaud m (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 3427–3431.

    Google Scholar 

  • Pérez S, Kouwijtzer M, Mazeau K&Engelsen SB (1996) Modeling Polysaccharides: Present Status and Challenges. J. Model. Graph. 307–321.

  • Reid G, Howard J& Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol. 9: 424–428.

    Google Scholar 

  • Ricciardi A&Clementi F (2000) Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Ital. J. Food. Sci. 23–45.

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285–315.

    Google Scholar 

  • Rohm H& Kovac A (1994) Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J. Texture Studies 25: 311–329.

    Google Scholar 

  • Rohm H& Schmid W (1993) Influence of dry matter fortification on flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft 48: 556–560.

    Google Scholar 

  • Ruijssenaars HJ, Stingele F& Hartmans S (2000) Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194–199.

    Google Scholar 

  • Sebastiani H& Zelger G (1998) Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft 53: 15–20.

    Google Scholar 

  • Stingele F, Neeser JR& Mollet B (1996) Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680–1690.

    Google Scholar 

  • Stingele F, Vincent SJ, Faber EJ, Newell JW, Kamerling JP& Neeser JR (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32: 1287–1295.

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides 181. Trends Biotechnol. 16: 41–46.

    Google Scholar 

  • Tamime AY&Robinson RK (1999) Yoghurt Science and Technology.

  • Teggatz JA& Morris HA (1990) Changes in the rheology and microstructure of ropy yogurt during shearing. Food Structure 9: 133–138.

    Google Scholar 

  • Tuinier R, ten Grotenhuis E, Holt C, Timmins PA& de Kruif CG (1999) Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review 60: 848–856.

    Google Scholar 

  • Tuinier R, van Casteren WH, Looijesteijn PJ, Schools HA, Voragen AG& Zoon P (2001) Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59: 160–166.

    Google Scholar 

  • Unligil UM& Rini JM (2000) Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10: 510–517.

    Google Scholar 

  • Van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Ledeboer AM& Verrips CT (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840–2844.

    Google Scholar 

  • Van Geel-Schutten GH, Faber EJ, Smit E, Bonting K, Smith MR, Ten Brink B, Kamerling JP, Vliegenthart JF& Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65: 3008–3014.

    Google Scholar 

  • van Kranenburg R, Boels IC, Kleerebezem M& de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr. Opin. Biotechnol. 10: 498–504.

    Google Scholar 

  • van Marle ME& Zoon P (1995) Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Netherlands Milk Dairy J. 49: 47–65.

    Google Scholar 

  • Vincent SJ, Faber EJ, Neeser JR, Stingele F& Kamerling JP (2001) Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology 11: 131–139.

    Google Scholar 

  • Whitfield C& Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv. Microb. Physiol. 35: 135–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolly, L., Vincent, S.J.F., Duboc, P. et al. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82, 367–374 (2002). https://doi.org/10.1023/A:1020668523541

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020668523541

Navigation