Abstract
Microbial exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) play a major role in the manufacturing of fermented dairy products. EPS production is characterized by a large variety in terms of quantity, chemical composition, molecular size, charge, type of sidechains and rigidity of the molecules. Monosaccharide unit's composition, linkages, charge and size determine the EPS' intrinsic properties and their interactions with other milk constituents. EPSs contribute to texture, mouthfeel, taste perception and stability of the final product. Furthermore, it was reported that EPS from food grade organisms, particularly LAB, have potential as food additives and as functional food ingredients with both health and economic benefits. A better understanding of structure-function relationships of EPS in a dairy food matrix and of EPS biosynthesis remain two major challenges for further applications of EPS and the engineering of functional polysaccharides.
Similar content being viewed by others
References
Berkman T, Bozoglu TF& Özilgen M (1990) Mixed culture growth kinetics of Streptococcus thermophilus and Lactobacillus bulgaricus. Enzyme Microbial Technol. 12: 138–140.
Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezem M& de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int. Dairy J. 11: 723–732.
Bouzar F, Cerning J& Desmazeaud M (1997) Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J. Dairy Sci. 80: 2310–2317.
Breton C, Mucha J& Jeanneau C (2001) Structural and functional features of glycosyltransferases. Biochimie 83: 713–718.
Cerning J, Bouillanne C, Desmazeaud MJ& Landon M (1986) Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625–628.
Cerning J, Bouillanne C, Landon M& Desmazeaud MJ (1990) Comparison of exocellular polysaccharide production by thermophilic acid bacteria. Science des Aliments 10: 443–451.
Cerning J, Bouillanne C, Landon M& Desmazeaud MJ (1992) Isolation and characterization of exopolysaccharides from slimeforming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692–699.
Cerning J& Marshall VME (1999) Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Results Develop. Microbiol. 3: 195–209.
Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud MJ& Topisirovic L (1994) Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914–3919.
Christiansen PS, Madeira AIMR& Edelstein D (1999) The use of ropy milk as stabilizer in the manufacture of ice cream. Milchwissenschaft 54: 138–140.
Choudhury D, Thompson A, Stojanoff V, Langermann S, Pinkner J, Hultgren SJ& Knight SD (1999) X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061–1066.
Cieslewicz MJ, Kasper DL, Wang Y& Wessels MR (2001) Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139–146.
Crescenzi V (1995) Microbial polysaccharides of applied interest: on going research activities in Europe. Biotechnol. Progr. 11: 251–259.
Cummings JH& Englyst HN (1995) Gastrointestinal effects of food carbohydrate. Am. J Clin. Nutr. 61: 938–945.
De Vuyst L, De Vin F, Vaningelgem F&and Degeest B. (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687–707.
De Vuyst L& Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153–177.
Duboc P, Fischer M&Vincent SJF (2002) Characterization of gluconacetan, a new texturizing carbohydrate polymer: a basis for a structure-function relationship in polysaccharides. Submitted for publication.
Duboc P& Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759–768.
Escalante A, Wacher-Rodarte C, Garcia-Garibay M& Farrés A (1998) Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. J. Appl. Microbiol. 84: 108–114.
Faber EJ, van Kuik JA, Kamerling JP& Vliegenthart JF (2002) Modeling of the structure in aqueous solution of the exopolysaccharide produced by Lactobacillus helveticus 766. Biopolymers 63: 66–76.
Faber EJ, Zoon P, Kamerling JP& Vliegenthart JF (1998) The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydr. Res. 310: 269–276.
Gancel F& Novel G (1994) Exopolysaccharide production by Streptococcus salivarius ssp. thermophilus cultures. Conditions of production. J. Dairy Sci. 77: 685–688.
German B, Schiffrin EJ, Reniero R, Mollet B, Pfeifer A& Neeser JR (1999) The development of functional foods: lessons from the gut. Trends Biotechnol. 17: 492–499.
Germond JE, Delley M, D'Amico N& Vincent SJ (2001) Heterologous expression and characterization of the exopolysaccharide from Streptococcus thermophilus Sfi39. Eur. J. Biochem. 268: 5149–5156.
Grobben GJ, Sikkema J, Smith MR& de Bont JAM (1995) Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. J. Appl. Bacteriol. 79: 103–107.
Harris PJ& Ferguson LR (1993) Dietary fibre: its composition and role in protection against colorectal cancer. Mutation Res. 290: 97–110.
Hess SJ, Roberts RF& Ziegler GR (1997) Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. J. Dairy Sci. 80: 252–263.
Jay AJ, Colquhoun IJ, Ridout MJ, Brownsey GJ, Morris VJ, Fialho AM, Leito JH& Sa-Correira I (1998) Analysis of structure and function of gellans with different substitution patterns. Carbohydr. Polym. 35: 179–188.
Jolly L, Newell J, Porcelli I, Vincent SJF&Stingele F (2002) Lactobacillus helveticus glycosyltransferases: from genes to carbohydrate synthesis. Glycobiol. In press.
Jolly L& Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. Int. Dairy J. 11: 733–745.
Kalab M, Allan-Wojtas P& Phipps-Todd BE (1983) Development of microstructure in set-style nonfat yoghurt. A review. Food Microstructure 2: 51–66.
Kojic M, Vujcic M, Banina A, Cocconcelli P, Cerning J& Topisirovic L (1992) Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Appl. Environ. Microbiol. 58: 4086–4088.
Kosikowski FV (1982) Cheese and Fermented Milk Foods. 2nd edn.
Levander F, Svensson M& Radstrom P (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl. Environ. Microbiol. 68: 784–790.
Looijesteijn PJ, Boels IC, Kleerebezem M& Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003–5008.
Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ& Broadbent JR (1998) Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Appl. Environ. Microbiol. 64: 2147–2151.
Macura D& Townsley PM (1984) Scandinavian ropy milk: identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67: 735–744.
McMahon DJ, Oberg CJ& McManus W (1993) Functionality of mozzarella cheese. Austr. J. Dairy Technol. 48: 99–104.
Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM& Remaud-Siméon M (2001) Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 675–685.
Moreira LM, Becker JD, Puhler A& Becker A (2000) The Sinorhizobium meliloti ExpE1 protein secreted by a type I secretion system involving ExpD1 and ExpD2 is required for biosynthesis or secretion of the exopolysaccharide galactoglucan. Microbiology 146: 2237–2248.
Mozzi F, Olivier G, Savyo de Giori GS& Font de Valdez GF (1995) Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50: 80–82.
Mozzi F, Savyo de Giori GS, Olivier G& Font de Valdez GF (1994) Effect of culture pH on the growth characteristics and polysaccharide production by Lactobacillus casei. Milchwissenschaft 49: 667–670.
Paton AW, Morona R& Paton JC (2000) A new biological agent for treatment of Shiga toxigenic Escherichia coli infections and dysentery in humans. Nat. Med. 6: 265–270.
Perry DB, McMahon DJ& Oberg CJ (1997) Effect of exopolysaccharide producing cultures on moisture retention in low-fat mozzarella cheese. J. Dairy Sci. 80: 799–805.
Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG& Strynadka NC (2001) Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8: 166–175.
Petry S, Furlan S, Crepeau MJ, Cerning J& Desmazeaud m (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 3427–3431.
Pérez S, Kouwijtzer M, Mazeau K&Engelsen SB (1996) Modeling Polysaccharides: Present Status and Challenges. J. Model. Graph. 307–321.
Reid G, Howard J& Gan BS (2001) Can bacterial interference prevent infection? Trends Microbiol. 9: 424–428.
Ricciardi A&Clementi F (2000) Exopolysaccharides from lactic acid bacteria: structure, production and technological applications. Ital. J. Food. Sci. 23–45.
Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu. Rev. Microbiol. 50: 285–315.
Rohm H& Kovac A (1994) Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J. Texture Studies 25: 311–329.
Rohm H& Schmid W (1993) Influence of dry matter fortification on flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft 48: 556–560.
Ruijssenaars HJ, Stingele F& Hartmans S (2000) Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194–199.
Sebastiani H& Zelger G (1998) Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft 53: 15–20.
Stingele F, Neeser JR& Mollet B (1996) Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680–1690.
Stingele F, Vincent SJ, Faber EJ, Newell JW, Kamerling JP& Neeser JR (1999) Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: production and characterization of an altered polysaccharide. Mol. Microbiol. 32: 1287–1295.
Sutherland IW (1998) Novel and established applications of microbial polysaccharides 181. Trends Biotechnol. 16: 41–46.
Tamime AY&Robinson RK (1999) Yoghurt Science and Technology.
Teggatz JA& Morris HA (1990) Changes in the rheology and microstructure of ropy yogurt during shearing. Food Structure 9: 133–138.
Tuinier R, ten Grotenhuis E, Holt C, Timmins PA& de Kruif CG (1999) Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review 60: 848–856.
Tuinier R, van Casteren WH, Looijesteijn PJ, Schools HA, Voragen AG& Zoon P (2001) Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59: 160–166.
Unligil UM& Rini JM (2000) Glycosyltransferase structure and mechanism. Curr. Opin. Struct. Biol. 10: 510–517.
Van den Berg DJC, Robijn GW, Janssen AC, Giuseppin MLF, Vreeker R, Kamerling JP, Vliegenthart JFG, Ledeboer AM& Verrips CT (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61: 2840–2844.
Van Geel-Schutten GH, Faber EJ, Smit E, Bonting K, Smith MR, Ten Brink B, Kamerling JP, Vliegenthart JF& Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl. Environ. Microbiol. 65: 3008–3014.
van Kranenburg R, Boels IC, Kleerebezem M& de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr. Opin. Biotechnol. 10: 498–504.
van Marle ME& Zoon P (1995) Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Netherlands Milk Dairy J. 49: 47–65.
Vincent SJ, Faber EJ, Neeser JR, Stingele F& Kamerling JP (2001) Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology 11: 131–139.
Whitfield C& Valvano MA (1993) Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv. Microb. Physiol. 35: 135–246.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Jolly, L., Vincent, S.J.F., Duboc, P. et al. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82, 367–374 (2002). https://doi.org/10.1023/A:1020668523541
Issue Date:
DOI: https://doi.org/10.1023/A:1020668523541