Abstract
Neoplastic cells form only one part of a complex network of cell types that make up a breast tumor. The normal cell types that make up the nonneoplastic components of tumors include fibroblasts, endothelium, and inflammatory cells, such as tumor associated macrophages (TAMs). TAMs have the potential to carry out both anti- and protumor activities. In their antitumor role TAMs can present tumor antigens to cytotoxic T-cells and are capable of being directly cytotoxic to neoplastic cells. Conversely, TAMs are also able to promote tumor growth directly by secreting breast tumor mitogens, such as epidermal growth factor, and indirectly by stimulating tumor angiogenesis and metastasis. Recent studies have indicated that in breast cancers the protumor role of TAMs is dominant, and that TAMs may be executing a “wound healing” type of process in response to stimuli found in the tumor microenvironment, such as hypoxia. As such, TAMs may provide opportunities for future therapeutic interventions.
Similar content being viewed by others
REFERENCES
R. D. Leek, A. L. Harris, and C. E. Lewis (1994). Cytokine networks in solid human tumors: Regulation of angiogenesis. J.Leukoc.Biol. 56: 423–435.
R. D. Leek, C. E. Lewis, and A. L. Hariss (1997). The role of macrophages in tumor angiogenesis. In R. Bicknell and C. E. Lewis (eds.), Tumor Angiogenesis, Oxford University Press, Oxford.
M.Crowther, N. J. Brown, E. T. Bishop, and C. E. Lewis (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J.Leukoc.Biol. 70: 478–490.
B. Bottazzi, N. Polentarutti, R. Acero, A. Balsari, D. Boraschi, P. Ghezzi, M. Salmona, and A. Mantovani (1983). Regulation of the macrophage content of neoplasms by chemoattractants. Science 220: 210–212.
D. T. Graves and A. J. Valente (1991). Monocyte chemotac-tic proteins from human tumor cells. Biochem.Pharmacol. 41: 333–337.
R. D. Leek, C. E. Lewis, R. Whitehouse, M. Greenall, J. Clarke, and A. L. Harris (1996). Association of macrophage infiltra-tion with angiogenesis and prognosis in invasive breast carci-noma. Cancer Res. 56: 4625–4629.
M. J. Auger and J. A. Ross (1992). The biology of the macrophage. In C. E. Lewis and J. O. D. McGee (eds.), TheMacrophage, Oxford University Press, Oxford.
C. E. Lewis and J. O. D. McGee (1992). The Macrophage, Oxford University Press, Oxford.
B. W. Winston, P. M. Krein, C. Mowat, and Y. Huang (1999). Cytokine-induced macrophage differentiation: A tale of 2 genes. Clin.Invest.Med. 22: 236–255.
A. Mantovani (1994). Tumor-associated macrophages in neo-plastic progression: A paradigm for the in vivo function of chemokines. Lab.Invest. 71: 5–16.
E. Neumark, R. Anavi, I. P. Witz, and A. Ben-Baruch (1999). MCP-1 expression as a potential contributor to the high malig-nancy phenotype of murine mammary adenocarcinoma cells. Immunol.Lett. 68: 141–146.
T. Ueno, M. Toi, H. Saji, M. Muta, H. Bando, K. Kuroi, M. Koike, H. Inadera, and K. Matsushima (2000). Significance of macrophage chemoattractant protein-1 in macrophage re-cruitment, angiogenesis, and survival in human breast cancer. Clin.Cancer Res. 6: 3282–3289.
V. Goede, L. Brogelli, M. Ziche, and H. G. Augustin (1999). In-duction of inflammatory angiogenesis by monocyte chemoat-tractant protein-1. Int.J.Cancer 82: 765–770.
Y. X. Fu, J. P. Cai, Y. H. Chin, G. A. Watson, and D. M. Lopez (1992). Regulation of leukocyte binding to endothelial tissues by tumor-derived GM-CSF. Int.J.Cancer 50: 585–588.
C. Pyke, N. Graem, E. Ralfkiaer, E. Ronne, G. Hoyer-Hansen, N. Brunner, and K. Dano (1993). Receptor for urokinase is present in tumor-associated macrophages in ductal breast car-cinoma. Cancer Res. 53: 1911–1915.
M. Dorsch, H. Hock, U. Kunzendorf, T. Diamantstein, and T. Blankenstein (1993). Macrophage colony-stimulating fac-tor gene transfer into tumor cells induces macrophage infiltra-tion but not tumor suppression. Eur.J.Immunol. 23: 186–190.
Y. Heike, S. Sone, S. Yano, H. Seimiya, T. Tsuruo, and T. Ogura (1993). M-CSF gene transduction in multidrug-resistant hu-man cancer cells to enhance anti-P-glycoprotein antibody-dependent macrophage-mediated cytotoxicity. Int.J.Cancer 54: 851–857.
S. M. Scholl, R. Lidereau, A. de la Rochefordiere, C. C. Le-Nir, V. Mosseri, C. Nogues, P. Pouillart, and F. R. Stanley (1996). Circulating levels of the macrophage colony stimulating factor CSF-1 in primary and metastatic breast cancer patients. Apilot study. Breast Cancer Res.Treat. 39: 275–283.
E. Y. Lin, A. V. Nguyen, R. G. Russell, and J. W. Pollard (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J.Exp.Med. 193: 727–740.
E. R. Stanley, L. J. Guilbert, R. J. Tushinski, and S. H. Bartelmez (1983). CSF-1--a mononuclear phagocyte lineage-specific hemopoietic growth factor. J.Cell.Biochem. 21: 151–159.
B. M. Kacinski (1995). CSF-1 and its receptor in ovarian, en-dometrial and breast cancer. Ann.Med. 27: 79–85.
M. Relf, S. Lejeune, P. A. E. Scott, S. Fox, K. Smith, R. Leek, A. Moghaddam, R. Whitehouse, R. Bicknell, and A. L. Harris (1997). Expression of the angiogenic factors vascu-lar endothelial-cell growth-factor, acidic and basic fibroblast growth-factor, tumor-growth factor-beta-1, platelet-derived endothelial-cell growth-factor, placenta growth-factor, and pleiotrophin in human primary breast-cancer and its relation to angiogenesis. Cancer Res. 57: 963–969.
M. Clauss, M. Gerlach, H. Gerlach, J. Brett, F. Wang, P. C. Familletti, Y. C. Pan, J. V. Olander, D. T. Connolly, and D. Stern (1990). Vascular permeability factor: A tumor-derived polypeptide that induces endothelial cell and monocyte pro-coagulant activity, and promotes monocyte migration. J.Exp. Med. 172: 1535–1545.
R. D. Leek, N. C. Hunt, R. J. Landers, C. E. Lewis, J. A. Royds, and A. L. Harris (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J.Pathol. 190: 430–436.
R. D. Leek, R. J. Landers, A. L. Harris, and C. E. Lewis (1999). Necrosis correlates with high vascular density and fo-cal macrophage infiltration in invasive carcinoma of the breast. Br.J.Cancer 79: 991–995.
A. C. Koong, N. C. Denko, K. M. Hudson, C. Schindler, L. Swiersz, C. Koch, S. Evans, H. Ibrahim, Q. T. Le, D. J. Terris, and A. J. Giaccia (2000). Candidate genes for the hypoxic tumor phenotype. Cancer Res. 60: 883–887.
A. Lal, H. Peters, B. St Croix, Z. A. Haroon, M. W. Dewhirst, R. L. Strausberg, J. H. Kaanders, A. J. van der Kogel, and G. J. Riggins (2001). Transcriptional response to hypoxia in human tumors. J.Natl.Cancer Inst. 93: 1337–1343.
M. J. Grimshaw and F. R. Balkwill (2001). Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation--a potential mechanism. Eur.J.Immunol. 31: 480–489.
T. M. Nilsson, A. E. Woods, and A. M. Rofe (1996). In vivo studies of macrophages and intercellular adhesion molecule-1 following lipopolysaccharide treatment in tumor-bearing rats. Immunol.Cell Biol. 74: 408–412.
D. Nath, A. Hartnell, L. Happerfield, D. W. Miles, J. Burchell, J. Taylor-Papadimitriou, and P. R. Crocker (1999). Macrophage-tumor cell interactions: Identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98: 213–219.
V. Shankaran, H. Ikeda, A. T. Bruce, J. M. White, P. E. Swanson, L. J. Old, and R. D. Schreiber (2001). IFNgammaand lymphocytes prevent primary tumor development and shape tumor immunogenicity. Nature 410: 1107–1111.
G. Beatty and Y. Paterson (2001). IFN-gamma-dependent in-hibition of tumor angiogenesis by tumor-infiltrating CD4 C T cells requires tumor responsiveness to IFN-gamma. J.Im-munol. 166: 2276–2282.
Y. X. Fu, G. A. Watson, M. Kasahara, and D. M. Lopez (1991). The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I: Induction of regulatory macrophages in normal mice by the in vivo admin-istration of rGM-CSF. J.Immunol. 146: 783–789.
C. Menetrier-Caux, G. Montmain, M. C. Dieu, C. Bain, M. C. Favrot, C. Caux, and J. Y. Blay (1998). Inhibition of the differentiation of dendritic cells from CD34( C ) progenitors by tumor cells: Role of interleukin-6 and macrophage colony-stimulating factor. Blood 92: 4778–4791.
D. I. Gabrilovich, H. L. Chen, K. R. Girgis, H. T. Cunningham, G. M. Meny, S. Nadaf, D. Kavanaugh, and D. P. Carbone (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat.Med. 2: 1096–1103.
K. A. Backman and P. M. Guyre (1994). Gamma-interferon inhibits Fc receptor II-mediated phagocytosis of tumor cells by human macrophages. Cancer Res. 54: 2456–2461.
U. Boehm, T. Klamp, M. Groot, and J. C. Howard (1997). Cellular responses to interferon-gamma. Annu.Rev.Im-munol. 15: 749–795.
H. Lei, D. W. Ju, Y. Yu, Q. Tao, G. Chen, S. Gu, H. Hamada, and X. Cao (2000). Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engi-neered to secrete macrophage colony-stimulating factor and interferon-gamma. Gene.Ther. 7: 707–713.
L. Kaklamanis, R. Leek, M. Koukourakis, K. C. Gatter, and A. L. Harris (1995). Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Res. 55: 5191–5194.
S. E. Webb, J. W. Pollard, and G. E. Jones (1996). Direct ob-servation and quantification of macrophage chemoattraction to the growth factor CSF-1. J.Cell Sci. 109: 793–803.
R. A. Clynes, T. L. Towers, L. G. Presta, and J. V. Ravetch (2000). Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat.Med. 6: 443–446.
M. Watanabe, P. K. Wallace, T. Keler, Y. M. Deo, C. Akewanlop, and D. F. Hayes (1999). Antibody dependent cel-lular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bis-pecific antibody, MDX-210. Breast Cancer Res.Treat. 53: 199–207.
V. Schirrmacher, L. Bai, V. Umansky, L. Yu, Y. Xing, and Z. Qian (2000). Newcastle disease virus activates macrophages for anti-tumor activity. Int.J.Oncol. 16: 363–373.
J. M. Quinn, J. O. McGee, and N. A. Athanasou (1998). Human tumor-associated macrophages differentiate into osteoclastic bone-resorbing cells. J.Pathol. 184: 31–36.
C. O'sullivan, C. E. Lewis, A. L. Harris, and J. O. McGee (1993). Secretion of epidermal growth factor by macrophages associated with breast carcinoma. Lancet 342: 148–149.
C. Sunderkotter, K. Steinbrink, M. Goebeler, R. Bhardwaj, and C. Sorg (1994). Macrophages and angiogenesis. J.Leukoc. Biol. 55: 410–422.
J. R. Sainsbury, J. R. Farndon, G. K. Needham, A. J. Malcolm, and A. L. Harris (1987). Epidermal-growth-factor receptor status as predictor of early recurrence of and death from breast cancer. Lancet 1: 1398–1402.
R. J. Steele, O. Eremin, M. Brown, and R. A. Hawkins (1986). Oestrogen receptor concentration and macrophage infiltra-tion in human breast cancer. Eur.J.Surg.Oncol. 12: 273–276.
G. Mor, W. Yue, R. J. Santen, L. Gutierrez, M. Eliza, L. M. Berstein, N. Harada, J. Wang, J. Lysiak, S. Diano, and F. Naftolin (1998). Macrophages, estrogen and the microen-vironment of breast cancer. J.Steroid Biochem.Mol.Biol. 67: 403–411.
C. I. Chang, J. C. Liao, and L. Kuo (2001). Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res. 61: 1100–1106.
J. MacMicking, Q. W. Xie, and C. Nathan (1997). Nitric oxide and macrophage function. Annu.Rev.Immunol. 15: 323–350.
D. A. Wink, Y. Vodovotz, J. Laval, F. Laval, M. W. Dewhirst, and J. B. Mitchell (1998). The multifaceted roles of nitric oxide in cancer. Carcinogenesis 19: 711–721.
J. K. Ruohola, T. P. Viitanen, E. M. Valve, J. A. Seppanen, N. T. Loponen, J. J. Keskitalo, P. T. Lakkakorpi, and P. L. Harkonen (2001). Enhanced invasion and tumor growth of fibroblast growth factor 8b-overexpressing MCF-7 human breast can-cer cells. Cancer Res. 61: 4229–4237.
D. G. Fernig, H. L. Chen, H. Rahmoune, S. Descamps, B. Boilly, and H. Hondermarck (2000). Differential regulation of FGF-1 and-2 mitogenic activity is related to their kinet-ics of binding to heparan sulfate in MDA-MB-231 human breast cancer cells. Biochem.Biophys.Res.Commun. 267: 770–776.
J. Nagy, G. W. Curry, K. J. Hillan, I. C. McKay, E. Mallon, A. D. Purushotham, and W. D. George (1996). Hepatocyte growth factor/scatter factor expression and c-met in primary breast cancer. Surg.Oncol. 5: 15–21.
J. A. Leal, B. K. Gangrade, J. L. Kiser, J. V. May, and B. A. Keel (1991). Human mammary tumor cell proliferation: Primary role of platelet-derived growth factor and possible synergism with human alpha-fetoprotein. Steroids 56: 247–251.
H. Nagaoka, Y. Iino, H. Takei, and Y. Morishita (1998). Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in macrophages correlates with tu-mor angiogenesis and prognosis in invasive breast cancer. Int. J.Oncol. 13: 449–454.
N. Jonjic, T. Valkovic, K. Lucin, Z. Iternicka, M. Krstulja, E. Mustac, R. Dobi-Babic, F. Sasso, and M. Melato (1998). Comparison of microvessel density with tumor associated macrophages in invasive breast carcinoma. Anticancer Res. 18: 3767–3770.
D. Toomey, J. Harmey, C. Condron, E. Kay, and D. Bouchier-Hayes (1999). Phenotyping of immune cell infiltrates in breast and colorectal tumors. Immunol.Invest. 28: 29–41.
A. K. Madan, K. Yu, N. Dhurandhar, C. Cullinane, Y. Pang, and D. J. Beech (1999). Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol.Rep. 6: 607–609.
P. Bertrand, N. Girard, C. Duval, J. d'Anjou, C. Chauzy, J. F. Menard, and B. Delpech (1997). Increased hyaluronidase levels in breast tumor metastases. Int.J.Cancer 73: 327–331.
D. Liu, E. Pearlman, E. Diaconu, K. Guo, H. Mori, T. Haqqi, S. Markowitz, J. Willson, and M. S. Sy (1996). Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc.Natl.Acad.Sci.USA 93: 7832–7837.
J. Folkman (1990). What is the evidence that tumors are an-giogenesis dependent. J.Natl.Cancer Inst. 82: 4–6.
N. Weidner, J. P. Semple, W. R. Welch, and J. Folkman (1991). Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N.Engl.J.Med. 324: 1–8.
A. H. Lee, L. C. Happerfield, L. G. Bobrow, and R. R. Millis (1997). Angiogenesis and inflammation in invasive carcinoma of the breast. J.Clin.Pathol. 50: 669–673.
A. H. Lee, L. C. Happerfield, R. R. Millis, and L. G. Bobrow (1996). Inflammatory infiltrate in invasive lobular and ductal carcinoma of the breast. Br.J.Cancer 74: 796–801.
S. M. Pupa, R. Bufalino, A. M. Invernizzi, S. Andreola, F. Rilke, L. Lombardi, M. I. Colnaghi, and S. Menard (1996). Macrophage infiltrate and prognosis in c-erbB-2-overexpressing breast carcinomas. J.Clin.Oncol. 14: 85–94.
J. S. Ross and J. A. Fletcher (1999). HER-2/neu (c-erb-B2) gene and protein in breast cancer. Am.J.Clin.Pathol. 112: S53–S67.
W. R. Bezwoda (2000). c-erb-B2 expression and response to treatment in metastatic breast cancer. Med.Oncol. 17: 22–28.
M. Cazin, D. Paluszezak, A. Bianchi, J. C. Cazin, C. Aerts, and C. Voisin (1990). Effects of anaerobiosis upon morphology and energy metabolism of alveolar macrophages cultured in gas phase. Eur.Respir.J. 3: 1015–1022.
J. S. Lewis, R. J. Landers, J. C. Underwood, A. L. Harris, and C. E. Lewis (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J.Pathol. 192: 150–158.
J. H. Harmey, E. Dimitriadis, E. Kay, H. P. Redmond, and D. Bouchier-Hayes (1998). Regulation of macrophage pro-duction of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann.Surg. Oncol. 5: 271–278.
N. S. Brown, A. Jones, C. Fujiyama, A. L. Harris, and R. Bicknell (2000). Thymidine phosphorylase induces carci-noma cell oxidative stress and promotes secretion of angio-genic factors. Cancer Res. 60: 6298–6302.
D. W. Miles, L. C. Happerfield, M. S. Naylor, L. G. Bobrow, R. D. Rubens, and F. R. Balkwill (1994). Expression of tumor necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int.J.Cancer 56: 777–782.
H. Eda, K. Fujimoto, S. Watanabe, M. Ura, A. Hino, Y. Tanaka, K. Wada, and H. Ishitsuka (1993). Cytokines induce thymidine phosphorylase expression in tumor cells and make them more susceptible to 50-deoxy-5-fluorouridine. Cancer Chemother. Pharmacol. 32: 333–338.
R. D. Leek, R. Landers, S. B. Fox, F. Ng, A. L. Harris, and C. E. Lewis (1998). Association of tumor necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br.J.Cancer 77: 2246–2251.
R. Hildenbrand, G. Wolf, B. Bohme, U. Bleyl, and A. Steinborn (1999). Urokinase plasminogen activator receptor (CD87) expression of tumor-associated macrophages in ductal car-cinoma in situ, breast cancer, and resident macrophages of normal breast tissue. J.Leukoc.Biol. 66: 40–49.
R. Hildenbrand, I. Dilger, A. Horlin, and H. J. Stutte (1995). Urokinase and macrophages in tumor angiogenesis. Br.J.Can-cer 72: 818–823.
R. Hildenbrand, C. Jansen, G. Wolf, B. Bohme, S. Berger, G. von Minckwitz, A. Horlin, M. Kaufmann, and H. J. Stutte (1998). Transforming growth factor-beta stimulates urokinase expression in tumor-associated macrophages of the breast. Lab.Invest. 78: 59–71.
R. A. Walker, S. J. Dearing, and B. Gallacher (1994). Rela-tionship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br. J.Cancer 69: 1160–1165.
D. Toomey, C. Condron, Q. D. Wu, E. Kay, J. Harmey, P. Broe, C. Kelly, and D. Bouchier-Hayes (2001). TGF-beta1 is ele-vated in breast cancer tissue and regulates nitric oxide pro-duction from a number of cellular sources during hypoxia re-oxygenation injury. Br.J.Biomed.Sci. 58: 177–183.
J. P. Van Netten, B. J. Ashmead, R. L. Parker, I. G. Thornton, C. Fletcher, D. Cavers, P. Coy, and M. L. Brigden (1993). Macrophage-tumor cell associations: A factor in metastasis of breast cancer? J.Leukoc.Biol. 54: 360–362.
P. R. Crocker, S. Mucklow, V. Bouckson, A. McWilliam, A. C. Willis, S. Gordon, G. Milon, S. Kelm, and P. Bradfield (1994). Sialoadhesin, a macrophage sialic acid binding recep-tor for haemopoietic cells with 17 immunoglobulin-like do-mains. EMBO J. 13: 4490–4503.
C. W. Pugh, J. Gleadle, and P. H. Maxwell (2001). Hypoxia and oxidative stress in breast cancer. Hypoxia signalling pathways. Breast Cancer Res. 3: 313–317.
M. Hampl, T. Tanaka, P. S. Albert, J. Lee, N. Ferrari, and H. A. Fine (2001). Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum.Gene Ther. 12: 1713–1729.
S. A. Im, J. S. Kim, C. Gomez-Manzano, J. Fueyo, T. J. Liu, M. S. Cho, C. M. Seong, S. N. Lee, Y. K. Hong, and W. K. Yung (2001). Inhibition of breast cancer growth in vivo by antian-giogenesis gene therapy with adenovirus-mediated antisense-VEGF. Br.J.Cancer 84: 1252–1257.
M. Kampa, A. Hatzoglou, G. Notas, M. Niniraki, E. Kouroumalis, and E. Castanas (2001). Opioids are non-competitive inhibitors of nitric oxide synthase in T47D human breast cancer cells. Cell Death Differ. 8: 943–952.
S. Pervin, R. Singh, C. L. Gau, H. Edamatsu, F. Tamanoi, and G. Chaudhuri (2001). Potentiation of nitric oxide-induced apoptosis of MDA-MB-468 cells by farnesyltransferase in-hibitor: Implications in breast cancer. Cancer Res. 61: 4701–4706.
L. C. Jadeski and P. K. Lala (1999). Nitric oxide synthase inhi-bition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am.J.Pathol. 155: 1381–1390.
L. L. Thomsen and D. W. Miles (1998). Role of nitric oxide in tumor progression: Lessons from human tumors. Cancer Metastasis Rev. 17: 107–118.
C. Denoyelle, M. Vasse, M. Korner, Z. Mishal, F. Ganne, J. P. Vannier, J. Soria, and C. Soria (2001). Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits the signaling pathways involved in the invasiveness and metastatic prop-erties of highly invasive breast cancer cell lines: An in vitro study. Carcinogenesis 22: 1139–1148.
D. M. Evans and K. Sloan-Stakleff (2000). Suppression of the invasive capacity of human breast cancer cells by inhibition of urokinase plasminogen activator via amiloride and B428. Am.Surg. 66: 460–464.
A. Kruger, R. Soeltl, V. Lutz, O. G. Wilhelm, V. Magdolen, E. E. Rojo, P. A. Hantzopoulos, H. Graeff, B. Gansbacher, and M. Schmitt (2000). Reduction of breast carcinoma tumor growth and lung colonization by overexpression of the sol-uble urokinase-type plasminogen activator receptor (CD87). Cancer Gene Ther. 7: 292–299.
H. Li, H. Lu, F. Griscelli, P. Opolon, L. Q. Sun, T. Ragot, Y. Legrand, D. Belin, J. Soria, C. Soria, M. Perricaudet, and P. Yeh (1998). Adenovirus-mediated delivery of a uPA/uPAR antagonist suppresses angiogenesis-dependent tumor growth and dissemination in mice. Gene.Ther. 5: 1105–1113.
R. J. Tressler, P. A. Pitot, J. R. Stratton, L. D. Forrest, S. Zhuo, R. J. Drummond, S. Fong, M. V. Doyle, L. V. Doyle, H. Y. Min, and S. Rosenberg (1999). Urokinase receptor antago-nists: Discovery and application to in vivo models of tumor growth. APMIS 107: 168–173.
R. H. Xing, A. Mazar, J. Henkin, and S. A. Rabbani (1997). Prevention of breast cancer growth, invasion, and metasta-sis by antiestrogen tamoxifen alone or in combination with urokinase inhibitor B-428. Cancer Res. 57: 3585–3593.
C. Erlichman, A. A. Adjei, S. R. Alberts, J. A. Sloan, R. M. Goldberg, H. C. Pitot, J. Rubin, P. J. Atherton, G. G. Klee, and R. Humphrey (2001). Phase I study of the matrix metallopro-teinase inhibitor, BAY 12–9566. Ann.Oncol. 12: 389–395.
Y. Jiang, M. Wang, M. Y. Celiker, Y. E. Liu, Q. X. Sang, I. D. Goldberg, and Y. E. Shi (2001). Stimulation of mammary tumorigenesis by systemic tissue inhibitor of matrix metallo-proteinase 4 gene delivery. Cancer Res. 61: 2365–2370.
J. Lee, M. Weber, S. Mejia, E. Bone, P. Watson, and W. Orr (2001). A matrix metalloproteinase inhibitor, batimastat, re-tards the development of osteolytic bone metastases by MDA-MB-231 human breast cancer cells in Balb C nu/nu mice. Eur. J.Cancer 37: 106–113.
P. D. Brown (2000). Ongoing trials with matrix metallopro-teinase inhibitors. Expert Opin.Investig.Drugs 9: 2167–2177.
P. D. Brown (1998). Matrix metalloproteinase inhibitors. Breast Cancer Res.Treat. 52: 125–136.
H. S. Rasmussen and P. P. McCann (1997). Matrix metallo-proteinase inhibition as a novel anticancer strategy: A review with special focus on batimastat and marimastat. Pharmacol. Ther. 75: 69–75.
F. Ciardiello, R. Caputo, R. Bianco, V. Damiano, G. Fontanini, S. Cuccato, S. De Placido, A. R. Bianco, and G. Tortora (2001). Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin.Cancer Res. 7: 1459–1465.
D. Liu, L. Buluwela, S. Ali, S. Thomson, J. J. Gomm, and R. C. Coombes (2001). Retroviral infection of the FGF2 gene into MCF-7 cells induces branching morphogenesis, retards cell growth and suppresses tumorigenicity in nude mice. Eur. J.Cancer 37: 268–280.
M. K. Yunmbam and A. Wellstein (2001). The bacterial polysaccharide tecogalan blocks growth of breast cancer cells in vivo. Oncol.Rep. 8: 161–164.
R. Bagheri-Yarmand, Y. Kourbali, C. Mabilat, J. F. Morere, A. Martin, H. Lu, C. Soria, J. Jozefonvicz, and M. Crepin (1998). The suppression of fibroblast growth factor 2/fi-broblast growth factor 4-dependent tumor angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7). Br.J.Cancer 78: 111–118.
N. S. Chang (1998). Transforming growth factor-beta protec-tion of cancer cells against tumor necrosis factor cytotoxicity is counteracted by hyaluronidase (review). Int.J.Mol.Med. 2: 653–659.
G. Baumgartner, C. Gomar-Hoss, L. Sakr, E. Ulsperger, and C. Wogritsch (1998). The impact of extracellular matrix on the chemoresistance of solid tumors--experimental and clinical results of hyaluronidase as additive to cytostatic chemother-apy. Cancer Lett. 131: 85–99.
B. S. Croix, J. W. Rak, S. Kapitain, C. Sheehan, C. H. Graham, and R. S. Kerbel (1996). Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mam-mary carcinoma cells. J.Natl.Cancer Inst. 88: 1285–1296.
M.Jaffar, K. J. Williams, and I. J. Stratford (2001). Bioreductive and gene therapy approaches to hypoxic diseases. Adv.Drug. Deliv.Rev. 53: 217–228.
G. Perletti, P. Concari, R. Giardini, E. Marras, F. Piccinini, J. Folkman, and L. Chen (2000). Antitumor activity of endo-statin against carcinogen-induced rat primary mammary tu-mors. Cancer Res. 60: 1793–1796.
M. S. O'Reilly, T. Boehm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285.
J. Vukanovic and J. T. Isaacs (1995). Linomide inhibits angiogenesis, growth, metastasis, and macrophage infiltra-tion within rat prostatic cancers. Cancer Res. 55: 1499–1504.
L. Griffiths, K. Binley, S. Iqball, O. Kan, P. Maxwell, P. Ratcliffe, C. Lewis, A. Harris, S. Kingsman, and S. Naylor (2000). The macrophage--a novel system to deliver gene ther-apy to pathological hypoxia. Gene.Ther. 7: 255–262.
M. Adachi, M. F. Roussel, K. Havenith, and C. J. Sherr (1997). Features of macrophage differentiation induced by p19INK4d, a specific inhibitor of cyclin D-dependent kinases. Blood 90: 126–137.
K. L. Talks, H. Turley, K. C. Gatter, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe, and A. L. Harris (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am.J.Pathol. 157: 411–421.
H. M. Ogmundsdottir (2001). Immune reaction to breast can-cer: For better or for worse? Arch.Immunol.ther.Exp.(Warsz) 49(Suppl. 2): S75–S81.
L. A. DiPietro (1995). Wound healing: The role of the macrophage and other immune cells. Shock 4: 233–240.
D. R. Knighton and V. D. Fiegel (1989). Macrophage-derived growth factors in wound healing: Regulation of growth factor production by the oxygen microenvironment. Am.Rev.Respir. Dis. 140: 1108–1111.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leek, R.D., Harris, A.L. Tumor-Associated Macrophages in Breast Cancer. J Mammary Gland Biol Neoplasia 7, 177–189 (2002). https://doi.org/10.1023/A:1020304003704
Issue Date:
DOI: https://doi.org/10.1023/A:1020304003704