Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T06:47:32.583Z Has data issue: false hasContentIssue false

Membrane fusion proteins of enveloped animal viruses

Published online by Cambridge University Press:  17 March 2009

Judith White
Affiliation:
Section of Cell Biology, Yale University School of Medicine, 333 Cedar Street, P. O. Box 3333, New Haven, Connecticut 06510
Margaret Kielian
Affiliation:
Section of Cell Biology, Yale University School of Medicine, 333 Cedar Street, P. O. Box 3333, New Haven, Connecticut 06510
Ari Helenius
Affiliation:
Section of Cell Biology, Yale University School of Medicine, 333 Cedar Street, P. O. Box 3333, New Haven, Connecticut 06510

Extract

In a living cell membrane-bound compartments are continuously either separated or united through fusion reactions, and literally thousands of such reactions take place every minute. The formation of membrane vesicles from pre-existing membranes, and their fusion with specific acceptor membranes, constitute a prerequisite for the transport of most impermeant molecules and macromolecules into the cell by endocytosis, out of the cell by exocytosis, and between the cellular organelles (Palade, 1975; Silverstein, 1978; Evered & Collins, 1982). Less frequent, but equally crucial, are fusion events in fertilization, cell division, polykaryon formation, enucleation, etc. (for reviews see Poste & Nicholson, 1978). Although a great deal is known about the properties and consequences of individual forms of membrane fusion in cellular systems, and about fusion in artificial lipid membranes, the molecular basis for the reactions remain largely unclear.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(L) REFERENCES

Anilionis, A., Wunner, W. H. & Curtis, P. (1981). Structure of the glycoprotein gene in rabies virus. Nature, Land. 294, 275278.CrossRefGoogle ScholarPubMed
Bächi, T., Deas, J. E. & Howe, C. (1977). Virus-erythrocyte membrane interactions. In Virus-infection and the Cell Surface (ed Poste, G. and Nicholson, G. L.), Cell Surface Reviews, vol. 2, pp. 83127. Amsterdam: Elsevier, North Holland.Google Scholar
Both, G. W. & Sleigh, M. J. (1980). Complete nucleotide sequence at the haemagglutinin gene from a human influenza virus of the Hong Kong subtype. Nucl. Acids Res. 8, 25612575.CrossRefGoogle ScholarPubMed
Brand, C. & Skehel, J. (1972). Crystalline antigen from the Influenza virus envelope. Nature New Biol. 238, 145147.CrossRefGoogle ScholarPubMed
Bratt, M. A. & Gallaher, W. R. (1969). Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. Proc. natn. Acad. Sci. U.S.A. 64, 536540.CrossRefGoogle ScholarPubMed
Brown, S. M., Ritchie, D. H. & Subak-Sharpe, J. H. (1973). Genetic studies with Herpes Simplex virus type I. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. J. gen. Virol. 18, 329346.CrossRefGoogle ScholarPubMed
Bucher, D. & Palese, P. (1975). The biologically active proteins of influenza virus: neuraminidase. In The Influenza Viruses and Influenza (ed. Kilbourne, E.), pp. 83123. New York: Academic Press, Inc.Google Scholar
Choppin, P. W. & Compans, R. W. (1975 a). Replication of paramyxoviruses. In Comprehensive Virology (ed. Fraenkel-Conrat, H. and Wagner, R.), 4, 94178. New York: Plenum Press.Google Scholar
Choppin, P. W. & Compans, R. W. (1975 b). The structure of Influenza virus. In The Influenza Viruses and Influenza (ed. Kilbourne, E.), pp. 5–5. New York: Academic Press.Google Scholar
Clarke, D. H. & Casals, J. (1958). Techniques for haemagglutination and haemagglutination inhibition with arthropod-borne viruses. Am. J. Trap. Med. Hyg. 7, 561573.CrossRefGoogle ScholarPubMed
Clavell, L. A. & Bratt, M. A. (1972). Hemolytic interaction of Newcastle disease virus and chicken erythrocytes (II). Determining factors. Appl. Microbiol. 23, 461470.CrossRefGoogle ScholarPubMed
Cullis, P. R. & Dekruijff, B. (1979). Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. biophys. Acta. 559, 399420.CrossRefGoogle ScholarPubMed
Dales, S. (1973). Early events in cell-animal virus interactions. Bacteriological Reviews. 37, 103135.CrossRefGoogle ScholarPubMed
Dalyrymple, J. M., Schlesinger, S. & Russell, P. K. (1976). Antigenic characterization of two Sindbis envelope glycoproteins separated by isoelectric focusing. Virology 69, 93103.CrossRefGoogle Scholar
De Duve, C., De Barsy, T., Poole, B., Trouet, A., Tulkens, P. & Van Hoof, F. (1974). Lysosomotropic agents. Biochem. Pharmac. 23, 24952531.CrossRefGoogle ScholarPubMed
Dimmock, N. J. (1982). Initial stages in infection with animal viruses. J. gen. Virol. 59, 122.CrossRefGoogle ScholarPubMed
Dopheide, T. A. A. & Ward, C. W. (1980). The amino acid sequence at a Hong Kong influenza haemagglutinin light (HA2) chain. J. gen. Virol. 50, 329335.CrossRefGoogle Scholar
Elsbach, P., Holmes, K. & Choppin, P. (1969). Metabolism of lecithin and virus-induced cell fusion. Proc. Soc. exp. Biol. Med. 130, 903908.CrossRefGoogle ScholarPubMed
Enders, J. F. & Peebles, T. C. (1954). Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc. Soc. exp. Biol. Med. 86, 277286.CrossRefGoogle ScholarPubMed
Evered, D. & Collins, G. M. (eds.) (1982). Membrane Recycling. CIBA Foundation Symposium, no. 92. Bath: Pitman.Google Scholar
Fan, D. P. & Sefton, B. M. (1978). The entry into host cells of Sindbis virus, vesicular stomatitis virus and Sendai virus. Cell 15, 985992.CrossRefGoogle ScholarPubMed
Fang, R., Min-Jou, W., Huylebroeck, D., Devos, R. & Fiers, W. (1981). Complete structure of A/duck/ukraine/63 Influenza hemagglutinin gene: animal virus as progenitor of human HS Hong Kong 1968 influenza hemagglutinin. Cell 25, 315323.CrossRefGoogle Scholar
Flanagan, M. T. & Skehel, J. J. (1977). The conformation of Influenza virus haemagglutinin. FEBS Lett. 80, 5760.CrossRefGoogle ScholarPubMed
Fries, E. & Helenius, A. (1979). Binding of Semliki Forest virus and its isolated glycoproteins to cells. Eur. J. Biochem. 97, 213220.CrossRefGoogle ScholarPubMed
Furasawa, M. (1981). Cellular microinjection by cell fusion: Technique and applications in biology and medicine. Int. Rev. Cytol. 62, 2965.CrossRefGoogle Scholar
Galloway, C. J., Dean, G. E., Marsh, M., Rudnick, G. & Mellman, I. (1983). Acidification of macrophage and fibroblast endocytic vesicles in vitro. Proc. natn. Acad. Sci. U.S.A. 80, 33343338.CrossRefGoogle ScholarPubMed
Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H. & Delius, H. (1980 a). Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature, Land. 288, 236241.CrossRefGoogle ScholarPubMed
Garoff, H., Frischauf, A.-M., Simons, K., Lehrach, H. & Delius, H. (1980 b). The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region. Proc. natn. Acad. Sci. U.S.A. 77, 63766380.CrossRefGoogle ScholarPubMed
Garoff, H., Kondor-Koch, C. & Riedel, H. (1982). Structure and assembly of alphaviruses. Curr. Top. Microbiol. Immunol. 99, 150.Google ScholarPubMed
Gething, M.-J., Bye, J., Skehel, J. & Waterfield, M. (1980). Cloning and DNA sequence of double-stranded copies of haemagglutinin genes from H2 and Hj strains elucidates antigenic shift and drift in human influenza virus. Nature, Land. 287, 301306.CrossRefGoogle Scholar
Gething, M.-J. & Sambrook, J. (1981). Cell-surface expression of influenza haemagglitinin from a cloned DNA copy of the RNA gene. Nature, Land. 293, 620625.CrossRefGoogle ScholarPubMed
Gething, M.-J. & Sambrook, J. (1982). Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein. Nature, Land. 300, 598603.CrossRefGoogle ScholarPubMed
Gething, M.-J., White, J. & Waterfield, M. (1978). Purification of the fusion protein of Sendai virus: analysis of the NH2-terminal sequence generated during precursor activation. Proc. natn. Acad. Sci. U.S.A. 75, 27372740.CrossRefGoogle ScholarPubMed
Gingell, D. & Ginsberg, L. (1978). Problems in the physical interpretation of membrane interaction and fusion. In Membrane Fusion Cell Surface Reviews, vol. 5 (ed. Poste, G. and Nicholson, G. L.), pp. 791833. Amsterdam: Elsevier: North Holland Biomedical Press.Google Scholar
Graves, M., Silver, S. & Choppin, P. (1978). Measles virus polypeptide synthesis in infected cells. Virology 86, 254263.CrossRefGoogle ScholarPubMed
Haffey, M. L. & Spear, P. G. (1980). Alterations in glycoprotein gB specified by mutants and their partial revertants in Herpes Simplex virus type I and relationship to other mutant phenotypes. J. Virol. 35, 114128.CrossRefGoogle ScholarPubMed
Hall, W., Lamb, R. & Choppin, P. (1980). The polypeptides of canine distemper virus: Synthesis in infected cells and relatedness to the polypeptides of other morbilliviruses. Virology 100, 433449.CrossRefGoogle Scholar
Haywood, A. M. (1974). Fusion of Sendai virus with model membranes. J. molec. Biol. 87, 625628.CrossRefGoogle ScholarPubMed
Helenius, A., Fries, E., Garoff, H. & Simons, K. (1976). Solubilization of the Semliki Forest virus membrane with sodium deoxycholate. Biochim. biophys. acta 436, 319334.CrossRefGoogle ScholarPubMed
Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. (1980 a). On the entry of Semlike Forest virus into BHK-2I cells. J. Cell Biol. 84, 404420.CrossRefGoogle Scholar
Helenius, A., Marsh, M. & White, J. (1982). Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. gen. Virol. 58, 4761.CrossRefGoogle ScholarPubMed
Helenius, A., Marsh, M. & White, J. (1980 b). The entry of viruses into animal cells. Trends in Biochemical Sciences 5, 104106.CrossRefGoogle Scholar
Helenius, A. & Simons, K. (1975). Solubilization of membranes by detergents. Biochim. biophys. Acta 415, 2979.CrossRefGoogle ScholarPubMed
Hightower, L. E., Morrison, T. G. & Bratt, M. A. (1975). Relationships among the polypeptides of Newcastle disease virus. J. Virol. 16, 15991607.CrossRefGoogle ScholarPubMed
Hiti, A. L., Davis, A. R. & Nayak, D. P. (1981). Complete sequence analysis shows that the hemagglutinins of the Ho and H2 subtypes of human influenza virus are closely related. Virology 111, 113124.CrossRefGoogle Scholar
Hoggan, M. D. & Roizman, B. (1959). The isolation and properties of a variant of herpes simplex producing multinucleated giant cells in monolayer cultures in the presence of antibody. Am. J. Hyg. 70, 208219.Google ScholarPubMed
Homma, M. & Ohuchi, M. (1973). Trypsin action on the growth of Sendai virus in tissue culture cells. J. Virol. 12, 14571465.CrossRefGoogle ScholarPubMed
Homma, M., Shimizu, K., Shimizu, Y. & Ishida, N. (1976). On the study of Sendai hemolysis. Complete Sendai virus lacking in hemolytic activity. Virology 71, 4147.CrossRefGoogle Scholar
Hope, M., Bruckdorfer, K., Hart, C. & Lucy, J. (1977). Membrane cholesterol and cell fusion of hen and guinea pig erythrocytes. Biochem. J. 166, 255263.CrossRefGoogle ScholarPubMed
Hosaka, Y., Semba, T. & Fukai, K. (1974). Artificial assembly of envelope particles of HVJ (Sendai virus). Fusion activity of envelope particles. J. gen. Virol. 25, 391404.CrossRefGoogle ScholarPubMed
Hsu, M.-C., Scheid, A. & Choppin, P. (1982). Enhancement of membrane-fusing activity of Sendai virus by exposure of the virus to basic pH is correlated with a conformational change in the fusion protein. Proc. natn. Acad. Sci. U.S.A. 79, 58625866.CrossRefGoogle ScholarPubMed
Hsu, M.-C., Scheid, A. & Choppin, P. (1981). Activation of the Sendai virus protein (F) involves a conformational change with exposure of a new hydrophobic region. J. biol. Chem. 256, 35573563.CrossRefGoogle ScholarPubMed
Hsu, M.-C., Scheid, A. & Choppin, P. (1979). Reconstruction of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology 95, 476491.CrossRefGoogle Scholar
Huang, R. T. C., Rott, R., Wahn, K., Klenk, H.-D. & Kohama, T. (1980 b) The function of the neuraminidase in membrane fusion induced by myxoviruses. Virology 107, 313319.CrossRefGoogle ScholarPubMed
Huang, R. T. C., Rott, R. & Klenk, H.-D. (1981). Influenza viruses cause hemolysis and fusion of cells. Virology 110, 243247.CrossRefGoogle ScholarPubMed
Huang, R. T. C., Wahn, K., Klenk, H.-D. & Rott, R. (1980 a). Fusion between cell membrane and liposomes containing the glycoproteins of influenza virus. Virology 104, 294302.CrossRefGoogle ScholarPubMed
Jensik, S. & Silver, S. (1976). Polypeptides of mumps virus. J. Virol. 17, 363373.CrossRefGoogle ScholarPubMed
Kääriainen, L. & Söderlund, H. (1978). Structure and replication of alphaviruses. Curr. Top. Microbiol. Immunol. 82, 1569.Google ScholarPubMed
Kääriainen, L. & Söderlund, H. (1971). Properties of Semliki Forest virus nucleocapsid I. Sensitivity to pancreatic ribonuclease. Virology 43, 291299.CrossRefGoogle ScholarPubMed
Klenk, H.-D., Rott, R., Orlich, M. & Blodorn, J. (1975). Activation of Influenza A viruses by trypsin treatment. Virology 68, 426439.CrossRefGoogle ScholarPubMed
Knutton, S. & Pasternak, C. A. (1979). The mechanism of cell-cell fusion. Trends Biochem. 4, 220223.CrossRefGoogle Scholar
Koch, W., Hunsmann, G. & Friedrich, R. (1983). Nucleotide sequence of the envelope gene of friend murine leukemia virus. J. Virol. 45, 19.CrossRefGoogle ScholarPubMed
Kohama, T., Shimizu, K. & Ishida, N. (1978). Carbohydrate composition of the envelope glycoproteins of Sendai virus. Virology 90, 226–34.CrossRefGoogle ScholarPubMed
Kohama, T., Garten, W. & Klenk, H.-D. (1981). Changes in conformation and charge paralleling proteolytic activiation of Newcastle disease virus glycoproteins. Virology 111, 364376.CrossRefGoogle Scholar
Kohn, A. (1965). Polykaryocytosis induced by Newcastle disease virus in monolayers of animal cells. Virology 26, 228245.CrossRefGoogle ScholarPubMed
Kondor-Koch, C., Rledel, H., Soderberg, K. & Garoff, H. (1983). Expression of the structural proteins of Semliki Forest virus from clones cDNA which has been micro-injected into the nucleus of Baby Hamster Kidney cells. Proc. natn. Acad. Sci. U.S.A. 79, 45254529.CrossRefGoogle Scholar
Krystal, M., Elliott, R., Benz, E., Young, J. & Palese, P. (1982). Evolution of influenza A and B viruses: Conservation of structural features in the hemagglutinin genes. Proc. natn. Acad. Sci. U.S.A. 79, 48004804.CrossRefGoogle Scholar
Kuroda, K., Maeda, T. & Ohnishi, S.-I. (1980). Enhancement of phospholipid transfer from Sendai virus to erythrocytes is mediated by target cell membrane. Proc. natn. Acad. Sci. U.S.A. 77, 804807.CrossRefGoogle ScholarPubMed
Landsberger, F., Greenberg, N. & Altstiel, L. (1981). Enveloped viruses-cell interactions. In The Replication of Negative Strand Viruses (ed. Bishop, D. and Compans, R.), pp. 517522. Amsterdam: Elsevier, North Holland.Google Scholar
Laver, G. & Air, G. (1980). Structure and Variation in Influenza Virus. Amsterdam: Elsevier, North Holland.Google Scholar
Laver, W. A. & Valentine, R. C. (1969). Morphology of the isolated hemagglutinin and neuraminidase subunits of Influenza virus. Virology 38, 105119.CrossRefGoogle ScholarPubMed
Lazarowitz, S. & Choppin, P. (1975). Enhancement of the infectivity of Influenza A and B viruses by proteolytic cleavage of the hemagglutinin polypeptide. Virology 68, 440454.CrossRefGoogle Scholar
Lenard, J., Bailey, C. & Miller, D. (1982). pH dependence of influenza virus-induced haemolysis is determined by the haemagglutinin gene. J. gen. Virol. 62, 353–55.CrossRefGoogle ScholarPubMed
Lenard, J. & Miller, D. K. (1981). pH-dependent hemolysisby Influenza, Semliki Forest virus, and Sendai virus. Virology 110, 479482.CrossRefGoogle ScholarPubMed
Lenz, J., Crowther, R., Straceski, A. & Haseltine, W. (1982). Nucleotide sequence of the AKV env gene. J. Virol. 42, 519529.CrossRefGoogle ScholarPubMed
Lis, L. J., Mcauster, M., Fuller, N. & Rand, R. P. (1982). Interactions between neutral phospholipid bilayer membranes. Biophys. J. 37, 657666.CrossRefGoogle ScholarPubMed
Little, S. P., Jofre, J. T., Courtney, R. J. & Schaffer, P. A. (1981). A virion-associated glycoprotein essential for infectivity of Herpes Simplex virus type I. Virology 115, 149–60.CrossRefGoogle Scholar
Lonberg-Holm, K. & Philipson, L. (1974). Early interaction between animal virus and cells. Monographs in Virology 9, 1149.CrossRefGoogle ScholarPubMed
Lucy, J. A. (1978). Mechanisms of chemically induced cell fusion. In Membrane Fusion, Cell Surface Reviews (ed. Poste, G. and Nicholson, G. L.), vol. 5, pp. 268297. Elsevier, North Holland: Biomedical Press.Google Scholar
Luginbuhl, D. (1873). Der micrococcus der variola. Arbeiten ans dem pathologischen Instit. Wurzburg 1871–72, pp. 159.Google Scholar
Luria, S. E., Darnell, J. E., Baltimore, D., & Campbell, A. (1978). General Virology, New York: John Wiley.Google Scholar
Lyles, D. S. & Landsberger, F. R. (1979). Kinetics of Sendai virus envelope fusion with erythrocyte membranes and virus-induced hemolysis. Biochem. J. 18, 50885095.CrossRefGoogle ScholarPubMed
Maeda, T., Kawasaki, K. & Ohnishi, S. (1981). Interaction of influenza virus haemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5–2. Proc. natn. Acad. Set. U.S.A. 78, 41334137.CrossRefGoogle ScholarPubMed
Maeda, T. & Ohnishi, S. (1980). Activation of influenza virus by acidic media causes hemolysis and fusion of erythrocytes. FEBS Lett. 122, 283287.CrossRefGoogle ScholarPubMed
Manservigi, R., Spear, P. G. & Buchan, A. (1977). Cell fusion induced by Herpes Simplex virus is promoted and suppressed by different viral glycoproteins. Proc. natn. Acad. Sci. U.S.A. 74, 39133917.CrossRefGoogle ScholarPubMed
Marcelja, S. & Radio, N. (1976). Repulsion of surfaces due to boundary water. Chem. Phys. Lett. 42, 129130.CrossRefGoogle Scholar
Marsh, M., Bolzau, E. & Helenius, A. (1983 a). Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32, 931940.CrossRefGoogle ScholarPubMed
Marsh, M., Bolzau, E., White, J. & Helenius, A. (1983 b). Interaction of Semliki Forest virus spike glycoprotein rosettes and vesicles with cultured cells. J. Cell. Biol. 96, 455461.CrossRefGoogle ScholarPubMed
Marsh, M., Matlin, K., Simons, K., Reggio, H., White, J., Kartenbeck, J. & Helenius, A. (1982). Are lysosomes a site of enveloped virus penetration. Cold Spring Harb. Symp. quant. Biol. 46, 835843.CrossRefGoogle ScholarPubMed
Matlin, K., Reggio, H., Helenius, A. & Simons, K. (1981). The infective entry of Influenza virus into MDCK-cells. J. Cell Biol. 91, 601613.CrossRefGoogle Scholar
Matlin, K. S., Reggio, H., Helenius, A. & Simons, K. (1983). The entry of enveloped viruses into an epithelial cell line. Proceedings of the International Conference on Biological Membranes (ed. L. Bolis). (In the Press.)Google Scholar
Matlin, K., Reggio, H., Simons, K. & Helenius, A. (1982). The pathway of vesicular stomatitis entry leading to infection. J. molec. Biol. 156, 609631.CrossRefGoogle ScholarPubMed
Ifune, K., Ohuchi, M. & Mannen, K. (1982). Hemolysis and cell fusion by rhabdoviruses. FEES Lett, 137, 293297.Google Scholar
Miller, D. K., Feuer, B., Vanderoef, R. & Lenard, J. (1980). Reconstituted G protein-lipid vesicles from vesicular stomatitis virus and their inhibition of VSV infection. J. Cell Biol. 84, 421429.CrossRefGoogle ScholarPubMed
Miller, D. K. & Lenard, J. (1980). Inhibition of vesicular stomatitis virus infection by spike glycoprotein. J. Cell Biol. 84, 430437.CrossRefGoogle ScholarPubMed
Miller, D. K. & Lenard, J. (1981). Antihistaminics, local anesthetics and other amines as antiviral agents. Proc. natn. Acad. Sci. U.S.A. 78, 36053609.CrossRefGoogle ScholarPubMed
Min Jou, M., Verhoeyen, M., Devos, R., Saman, E., Fang, R., Hylebroeck, D., Friers, W., Threlfall, G., Barber, C., Carey, N. & Emtage, S. (1980). Complete structure of the Hemagglutinin gene from the human influenza A/Victoria/3/75 (H3N2) strain as determined from cloned DNA. Cell 19, 683696.Google Scholar
Mooney, J. J., Dalrymple, J. M., Alving, C. R. & Russell, P. K. (1975). Interaction of Sindbis virus with liposomal model membranes. J. Virol. 15, 225231.CrossRefGoogle ScholarPubMed
Nagai, Y. & Klenk, H.-D. (1977). Activation of precursors to both glycoproteins of Newcastle disease virus by proteolytic cleavage. Virology 77, 125134.CrossRefGoogle ScholarPubMed
Ohkuma, S., Moriyama, Y. & Takano, T. (1982). Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc. natn. Acad. Sci. U.S.A. 79, 27582762.CrossRefGoogle ScholarPubMed
Ohkuma, S. & Poole, B. (1978). Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. natn. Acad. Sci. U.S.A. 75, 33273331.CrossRefGoogle ScholarPubMed
Ohuchi, M., Ohuchi, R. & Mifune, K. (1982). Demonstration of hemolytic and fusion activities of Influenza C virus. J. Virol. 42, 10761079.CrossRefGoogle ScholarPubMed
Oku, N., Nojima, S. & Inoue, K. (1982). Studies on the interaction of HVJ (Sendai virus) with liposomal membranes. HVJ-induced permeability increase of liposomes containing glycophorin. Virology 116, 419427.CrossRefGoogle ScholarPubMed
Ozawa, M. & Asano, A. (1981). The preparation of cell fusion inducing proteoliposomes from purified glycoproteins of HVJ (Sendai virus) and chemically defined lipids. J. biol. Chem. 256, 59545956.CrossRefGoogle ScholarPubMed
Pagano, R. E. & Weinstein, J. N. (1978). Interactions of liposomes with mammalian cells. A. Rev. Biophys. Bioengng 7, 435468.CrossRefGoogle ScholarPubMed
Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science, N. Y. 189, 347357.CrossRefGoogle ScholarPubMed
Papahadjopoulos, D. (1978). Calcium-induced phase changes and fusion in natural and model membranes. In Membrane Fusion, Cell Surface Reviews, vol. 5 (ed. Poste, G. and Nicholson, G.), pp. 765790. Elsevier, North-Holland: Biomedical Press.Google ScholarPubMed
Parsegian, V. A., Fuller, N. & Rand, R. P. (1979). Measured work of deformation and repulsion of lecithin bilayers. Proc. natn. Acad. Sci. U.S.A. 76, 27502754.CrossRefGoogle ScholarPubMed
Patzer, E. J., Wagner, R. R. & Dubovi, E. J. (1979). Viral membranes: model systems for studying biological membranes. CRC Crit. Rev. in Biochemistry 6, 165217.CrossRefGoogle ScholarPubMed
Pazmino, N. H., Yuhas, J. M. & Tennant, R. W. (1974). Inhibition of murine RNA tumor virus replication and oncogenesis by chloroquine. Int. J. Cancer 14, 379385.CrossRefGoogle ScholarPubMed
Person, S., Knowles, R. W., Read, G. S., Warner, S. C. & Bond, V. C. (1976). Kinetics of cell fusion induced by a syncytia-producing mutant of herpes simplex type I. J. Virol. 17, 183190.CrossRefGoogle Scholar
Person, S., Kousoulas, K. G., Knowles, R. W., Read, G. S., Holland, T. C., Keller, P. M. & Warner, S. C. (1982). Glycoprotein processing in mutants of HSV-1 that induce cell fusion. Virology 117, 293306.CrossRefGoogle ScholarPubMed
Porter, A. G., Barber, C., Carey, N. H., Hallewell, R. A., Threlfall, G. & Emtage, J. S. (1979). Complete nucleotide sequence of an influenza virus haemagglutinin gene from cloned DNA. Nature, Land. 282, 471477.CrossRefGoogle ScholarPubMed
Porterfield, J. S. & Rowe, C. E. (1960). Haemagglutination with arthropod-borne viruses and its inhibition by certain phospholipids. Virol. 11, 765770.CrossRefGoogle ScholarPubMed
Poste, G. (1972). Mechanisms of virus-induced cell fusion. Int. Rev. Cytol. 33, 157252.CrossRefGoogle ScholarPubMed
Poste, G. & Nicholson, G. C. (eds) (1978). Membrane Fusion. Cell Surface Reviews, vol. 5. North Holland: Elsevier.Google Scholar
Poste, G. & Pasternak, C. A. (1978). Virus induced cell fusion. In Membrane Fusion (ed. Poste, G. and Nicholson, G. C.), Cell Surface Reviews, vol. 5, pp. 305367. Elsevier, North Holland.Google Scholar
Rand, R. (1981). Interacting phospholipid bilayers: measured forces and induced structural changes. A. Rev. Biophys. Bioengng 10, 277314.CrossRefGoogle ScholarPubMed
Reading, C. L., Penhoet, E. E. & Ballou, C. E. (1978). Carbohydrate structure of vesicular stomatitis virus glycoprotein. J. biol. Chem. 253, 56005612.CrossRefGoogle ScholarPubMed
Redmond, S. M. S. & Drickson, C. (1983). Sequence and expression of the mouse mammary tumour virus env gene. The EMBO Journal 2 (in the Press).CrossRefGoogle ScholarPubMed
Rhim, J. S., Lane, W. T. & Huebner, R. J. (1972). Amantadine hydro-chloride: inhibitory effect on murine parcoma virus infection in cell cultures. Proc. Soc. exp. Biol. Med. 139, 12581260.CrossRefGoogle Scholar
Rice, C. & Strauss, J. (1981). Nucleotide sequence of the 268 mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc. natn. Acad. Sci. U.S.A. 78, 20622066.CrossRefGoogle Scholar
Richardson, C., Scheid, A. & Choppin, P. (1980). Specific inhibition of paramyxo-virus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the Ft or HA2 viral polypeptides. Virology 105, 205222.CrossRefGoogle ScholarPubMed
Roizman, B. (1962). Polykaryocytosis. Cold Spring Harb. Seminars Quant. Biol. 27, 327342.CrossRefGoogle ScholarPubMed
Rose, J. K. & Bergman, J. E. (1982). Expression from cloned cDNA of cell-surface and secreted forms of the glycoprotein of vesicular stomatitis virus in eukarytotic cells. Cell 30, 753762.CrossRefGoogle Scholar
Rose, J. K., Doolittle, R. F., Anilionis, A., Curtis, P. J. & Wunner, W. H. (1982). Homology between the glycoproteins of vesicular stomatitis virus and rabies virus. J. Virol. 43, 361364.CrossRefGoogle ScholarPubMed
Rose, J. K. & Gallione, C. J. (1981). Nucleotide sequence of the mRNAs encoding the vesicular stomatitis virus G and M proteins determined from cDNA clones containing the complete coding regions. J. Virol. 39, 519528.CrossRefGoogle Scholar
Rose, J. K., Welch, W. J., Sefton, B. M., Esch, F. S. & Ling, N. C. (1980). Vesicular stomatitis virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near the COOH terminus. Proc. natn. Acad. Sci. U.S.A. 77, 38843888.CrossRefGoogle ScholarPubMed
Salminen, A. (1962). Chemistry of nonspecific inhibitors of hemagglutination by arthropod-borne viruses. Virology 16, 201203.CrossRefGoogle ScholarPubMed
Saraste, J. (1981). Biosynthesis and intracellular transport of Semliki Forest virus membrane glycoproteins. Ph. D. thesis, University of Helsinki.Google Scholar
Scheid, A., Caliguiri, L., Compans, R. & Choppin, P. (1972). Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50, 640652.CrossRefGoogle ScholarPubMed
Scheid, A. & Choppin, P. (1976). Protease activation mutants of Sendai virus. Activation of biological properties by specific proteases. Virology 69, 265277.CrossRefGoogle ScholarPubMed
Scheid, A. & Choppin, P. (1974). Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57, 475490.CrossRefGoogle ScholarPubMed
Scheid, A., Graves, M., Silver, S. & Choppin, P. (1978). Studies on the structure and function of paramyxovirus glycoproteins. In Negative Strand Viruses and the Host Cell (ed. Mahy, B. and Barry, R.), pp. 183193. New York: Academic Press.Google Scholar
Schimizu, Y., Yamamoto, S., Hana, M. & Ishida, Z. N. (1972). Effect of chloroquine on the growth of animal viruses. Arch. ges. Virusforsch. 36, 93104.CrossRefGoogle Scholar
Schlegel, R. A. & Rechsteiner, M. C. (1978). Red cell-mediated micro-injection of macromolecules into mammalian cells. Methods Cell Biol. 20, 341354.CrossRefGoogle Scholar
Schwartz, D., Tizard, R. & Gilbert, W. (1982). In The Molecular Biology of Tumour Viruses, RNA Tumour Viruses (ed. Weiss, R., Teich, N., Varmus, H. E. and Coffin, J.), 2nd ed., pp. 13381348. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Shinnick, T. M., Lerner, R. A. & Sutcliffe, J. A. (1981). Nucleotide sequence of Moloney murine leukemia virus. Nature, Lond. 293, 543548.CrossRefGoogle Scholar
Silverstein, S. C. (ed.) (1978). Transport of Macromolecules in Cellular Systems. Life Sciences Research Report II. Dahlem Konferenzen, Berlin.Google Scholar
Simons, K., Garoff, H. & Helenius, A. (1982). How an animal virus gets into and out of its host cell. Scient. Am. 246, 5866.CrossRefGoogle ScholarPubMed
Simons, K. & Garoff, H. (1980). The budding mechanism of enveloped animal viruses. J. gen. Virol 50, 121.Google ScholarPubMed
Simons, K., Garoff, H., Helenius, A. & Ziemiecki, A. (1978). The structure and assembly of the membrane of Semliki Forest virus. In Frontiers of Physiochemical Biology (ed. Pullman, B.), pp. 387407. New York: Academic Press.CrossRefGoogle Scholar
Skehel, J., Bayley, P., Brown, E., Martin, S., Waterfield, M., White, J., Wilson, I. & Wiley, D. (1982). Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc. natn. Acad. Sci. U.S.A. 79, 968972.CrossRefGoogle Scholar
Skehel, J. & Waterfield, M. (1975). Studies on the primary structure of the Influenza virus hemagglutinin. Proc. natn. Acad. Sci. U.S.A. 72, 9397.CrossRefGoogle ScholarPubMed
Smithburn, K. C. & Haddow, A. J. (1944). Semliki Forest virus I. Isolation and pathogenic properties. J. Immunol. 49, 141157.CrossRefGoogle Scholar
Smyth, C. J. & Duncan, J. L. (1978). Thiol-activated (oxygen-labile) cytolysins. In Bacterial Toxins and Cell Membranes (ed. Jeljaszewitz, J. and Wadstrom, T.). New York: Academic Press.Google Scholar
Stephenson, J. R. (1980). Molecular Biology of RNA-Tumor Viruses. New York: Academic Press.Google Scholar
Tycko, B. & Maxfield, F. R. (1982). Rapid acidification of endocytic vesicles containing a2-macroglobulin. Cell 28, 643651.CrossRefGoogle Scholar
Uchida, T., Kim, J., Yamaizumi, M., Miyake, Y. & Okada, Y. (1979). Reconstitution of lipid vesicles associated with HVJ (Sendai virus) spikes. J. Cell Biol. 80, 1020.CrossRefGoogle Scholar
Väänänen, P., Gahmberg, C. G. & Kääriäinen, L. (1981). Fusion of Semliki Forest virus with red cell membranes. Virology 110, 366374.CrossRefGoogle ScholarPubMed
Väänänen, P. & Kääriäinen, L. (1980). Fusion and hemolysis of erythro-cytes caused by three togaviruses: Semliki Forest, Sindbis and Rubella. J. gen. Virol. 46, 467475.CrossRefGoogle Scholar
Väänänen, P. & Kääriäinen, L. (1979). Hemolysis by two alpha-viruses: Semliki Forest virus and Sindbis virus. J. gen. Virol. 43, 593601.CrossRefGoogle ScholarPubMed
Van Renswoude, J., Bridges, K. R., Harford, J. B. & Klausner, R. D. (1982). Receptor mediated endocytosis of transferrin and the uptake of Fe in K. 522 cells: Identification of a nonlysosomal acidic compartment. Proc. natn. Acad. Sci. U.S.A. 79, 61866190.CrossRefGoogle Scholar
Verhoeyen, M., Fang, R., Min Jou, W., Devos, R., Huylebroeck, D., Saman, E. & Fiers, W. (1980). Antigenic drift between the haemagglutinin of the Hong Kong Influenza strains A/Aichi/2/68 and A/Victoria/3/75. Nature, Land. 286, 771776.CrossRefGoogle Scholar
Volsky, D. J. & Loyter, A. (1978). An efficient method for reassembly of fusogenic Sendai virus envelopes after solubilization of intact virions with Triton X-100. FEBS Lett. 92, 190194.CrossRefGoogle ScholarPubMed
Wallbank, A. M., Matler, R. E. & Klinikowski, N. G. (1966). 1-Adamatanamine hydrochloride: inhibition of Rous and Esh sarcoma viruses in cell culture. Science, N. Y. 152, 17601761.CrossRefGoogle ScholarPubMed
Ward, C. W. & Dopheide, T. A. A. (1980). Completion of the amino acid sequence of a Hong Kong Influenza hemagglutinin heavy chain: sequence of cyanogen bromide fragment CN1. Virology 103, 3753.CrossRefGoogle ScholarPubMed
Webster, R. G., Layer, W. G., Air, G. M. & Schild, G. C. (1982). Molecular mechanisms of variation in Influenza viruses. Nature, Land. 296, 115121.CrossRefGoogle ScholarPubMed
Welch, W. J. & Sefton, B. M. (1979). Two small virus-specific polypeptides are produced during infection with Sindbis virus. J. Virol. 29, 11861195.CrossRefGoogle ScholarPubMed
White, J. (1979). The fusion protein of Sendai virus. Ph. D. thesis, Harvard University.Google Scholar
White, J., Helenius, A. & Kartenbeck, J. (1982 a). Membrane fusion activity of influenza virus. EMBO J. 1, 217222.CrossRefGoogle ScholarPubMed
White, J., Helenius, A. & Gething, M.-J. (1982 b). Haemagglutinin of Influenza expressed from a cloned gene promotes membrane fusion. Nature 300, 658659.CrossRefGoogle ScholarPubMed
White, J. & Helenius, A. (1980). pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. natn. Acad. Sci. U.S.A. 77, 32733277.CrossRefGoogle ScholarPubMed
White, J., Kartenbeck, J. & Helenius, A. (1980). Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. J. Cell Biol. 87, 264272.CrossRefGoogle ScholarPubMed
White, J., Matlin, K. & Helenius, A. (1981). Cell fusion by Semliki Forest, influenza and vesicular stomatitis virus. J. Cell Biol. 89, 674679.CrossRefGoogle Scholar
Wilson, I., Skehel, J. & Wiley, D. (1981). Structure of the hemagglutinin membrane glycoprotein of Influenza virus at 3 A resolution. Nature, Land. 289, 366373.CrossRefGoogle ScholarPubMed
Winter, G., Fields, S. & Brownlee, G. G. (1981). Nucleotide sequence of the haemagglutinin gene of a human Influenza virus H1 subtype. Nature, Lond. 292, 7275.CrossRefGoogle ScholarPubMed
Yamamoto, K., Suzuki, K. & Simizu, B. (1981). Hemolytic activity of the envelope glycoproteins of Western Equine Encephalitis virus in reconstitution experiments. Virology 109, 452454.CrossRefGoogle ScholarPubMed
Yoshimura, A., Kurada, K., Kawasaki, K., Yamashina, S., Maeda, T. & Ohnishi, S.-I. (1982). Infectious cell entry mechanism of influenza virus. J. Virol. 43, 284293CrossRefGoogle ScholarPubMed