Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T00:48:25.096Z Has data issue: false hasContentIssue false

Translation initiation: structures, mechanisms and evolution

Published online by Cambridge University Press:  17 May 2005

Assen Marintchev
Affiliation:
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
Gerhard Wagner
Affiliation:
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA

Abstract

Translation, the process of mRNA-encoded protein synthesis, requires a complex apparatus, composed of the ribosome, tRNAs and additional protein factors, including aminoacyl tRNA synthetases. The ribosome provides the platform for proper assembly of mRNA, tRNAs and protein factors and carries the peptidyl-transferase activity. It consists of small and large subunits. The ribosomes are ribonucleoprotein particles with a ribosomal RNA core, to which multiple ribosomal proteins are bound. The sequence and structure of ribosomal RNAs, tRNAs, some of the ribosomal proteins and some of the additional protein factors are conserved in all kingdoms, underlying the common origin of the translation apparatus. Translation can be subdivided into several steps: initiation, elongation, termination and recycling. Of these, initiation is the most complex and the most divergent among the different kingdoms of life. A great amount of new structural, biochemical and genetic information on translation initiation has been accumulated in recent years, which led to the realization that initiation also shows a great degree of conservation throughout evolution. In this review, we summarize the available structural and functional data on translation initiation in the context of evolution, drawing parallels between eubacteria, archaea, and eukaryotes. We will start with an overview of the ribosome structure and of translation in general, placing emphasis on factors and processes with relevance to initiation. The major steps in initiation and the factors involved will be described, followed by discussion of the structure and function of the individual initiation factors throughout evolution. We will conclude with a summary of the available information on the kinetic and thermodynamic aspects of translation initiation.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)