Skip to main content

Advertisement

Log in

Identification of novel metabolites of abiraterone in human serum and their metabolic pathways

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Two novel abiraterone (Abi, 3β-OH-Abi) metabolites in human serum were identified as 3α-OH-Abi and Δ5-Abi (D5A). Both metabolites were confirmed by their retention times on LC/MS and their product-ion mass spectra on LC–MS/MS compared to those of authentic compounds, which were chemically synthesized. The plausible metabolic pathways of these two metabolites are as follows: Abi is first oxidized to D5A by 3β-hydroxysteroid dehydrogenase (3β-HSD) and then irreversibly converted to Δ4-Abi (D4A) by ∆5–∆4 isomerase. Presumably, D5A detection is difficult because of its rapid conversion to D4A and its low concentration in serum samples. In contrast, the low concentration 3α-OH-Abi was generated by reducing the remaining D5A using 3α-hydroxysteroid dehydrogenase (3α-HSD).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4
Fig. 5
Scheme 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. G. Gandaglia, R. Leni, F. Bray, N. Fleshner, S.J. Freedland, A. Kibel, P. Stattin, H.V. Poppel, C. La Vecchia, Eur Urol Oncol 4, 877 (2021). https://doi.org/10.1016/j.euo.2021.09.006

    Article  PubMed  Google Scholar 

  2. J. Ferlay, M. Colombet, I. Soerjomataram, D.M. Parkin, M. Piñeros, A. Znaor, F. Bray, Int. J. Cancer 149, 778 (2021). https://doi.org/10.1002/ijc.33588

    Article  CAS  Google Scholar 

  3. R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, CA Cancer J. Clin. 72, 7 (2022). https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  4. M.H. Tan, J. Li, H.E. Xu, K. Melcher, E.L. Yong, Acta Pharmacol. Sin. 36, 3 (2015). https://doi.org/10.1038/aps.2014.18

    Article  CAS  PubMed  Google Scholar 

  5. H. Charles, V.H. Clarence, Cancer Res. 1, 293 (1941)

    Google Scholar 

  6. Y. Li, S.C. Chan, L.J. Brand, T.H. Hwang, K.A.T. Silverstein, S.M. Dehm, Cancer Res. 73, 483 (2013). https://doi.org/10.1158/0008-5472.CAN-12-3630

    Article  CAS  PubMed  Google Scholar 

  7. S.S. Dutt, A.C. Gao, Future Oncol. 5, 1403 (2009). https://doi.org/10.2217/fon.09.117

    Article  CAS  PubMed  Google Scholar 

  8. A.H. Payne, D.B. Hales, Endocr. Rev. 25, 947 (2004). https://doi.org/10.1210/er.2003-0030

    Article  CAS  PubMed  Google Scholar 

  9. Z. Li, A.C. Bishop, M. Alyamani, J.A. Garcia, R. Dreicer, D. Bunch, J. Liu, S.K. Upadhyay, R.J. Auchus, N. Sharifi, Nature 523, 347 (2015). https://doi.org/10.1038/nature14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Z. Li, M. Alyamani, J. Li, K. Rogacki, M. Abazeed, S.K. Upadhyay, S.P. Balk, M.E. Taplin, R.J. Auchus, N. Sharifi, Nature 533, 547 (2016). https://doi.org/10.1038/nature17954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. Kanji, S. Horiyama, T. Kimachi, J. Haginaka, Anal. Sci. 37, 1281 (2021). https://doi.org/10.2116/analsci.21P035

    Article  CAS  PubMed  Google Scholar 

  12. M. Shiota, R. Inoue, K. Tashiro, K. Kobayashi, S. Horiyama, H. Kanji, M. Eto, S. Egawa, J. Haginaka, H. Matsuyama, J. Clin. Pharmacol. 37, 445 (2023). https://doi.org/10.1002/jcph.2191

    Article  CAS  Google Scholar 

  13. J.L. Thomas, R.C. Strickler, R.P. Myers, D.F. Covey, Biochem. 31, 5522 (1992). https://doi.org/10.1021/bi00139a014

    Article  CAS  Google Scholar 

  14. S.G. Cheatum, J.C. Warren, Biochim. Biophys. Acta 122, 1 (1966). https://doi.org/10.1016/0926-6593(66)90086-5

    Article  CAS  PubMed  Google Scholar 

  15. M.K. Rasmussen, B. Ekstrand, G. Zamaratskaia, Int. J. Mol. Sci. 14, 17926 (2013). https://doi.org/10.3390/ijms140917926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. W.-N. Wu, L.A. McKown, Methods in pharmacology and toxicology optimization in drug discovery: in vitro methodsm (Humana Press, Totowa, 2004)

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by JSPS KAKENHI (Grant no. 22K06571). We thank Dr. Taro Sakamoto of Bruker Japan for his help regarding MS/MS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shizuyo Horiyama or Noboru Hayama.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 265 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiyama, S., Hayama, N., Yoneyama, H. et al. Identification of novel metabolites of abiraterone in human serum and their metabolic pathways. ANAL. SCI. 40, 67–74 (2024). https://doi.org/10.1007/s44211-023-00431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00431-4

Keywords

Navigation