Skip to main content

Advertisement

Log in

Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering

  • Original Research
  • Published:
In vitro models Aims and scope Submit manuscript

Abstract

Objective

Polycaprolactone (PCL) is a widely applied biomaterial in bone tissue engineering (BTE) due to its superior mechanical properties and biodegradability. However, the high hydrophobicity and low cell adhesion properties of PCL show limited cell interactions. Herein, we prepared the porous PCL/DBP composites with improved cell adhesion through the addition of demineralized bone powder (DBP). Three-dimensional scaffolds were fabricated by mixing various concentrations of DBP with PCL and applying non-solvent-induced phase separation (NIPS) and thermal-induced phase separation (TIPS) (N-TIPS) and solvent casting and particulate leaching (SCPL) to impart porosity.

Methods

A characteristic evaluation was performed through X-ray diffraction (XRD), morphological analysis, physicochemical analysis, bioactivity test, and mechanical test. Upon culture with mouse bone marrow stem cells (mBMSCs), proliferation and osteogenic differentiation of mBMSC were evaluated using quantitative dsDNA analysis and alkaline phosphatase (ALP) activity, respectively.

Results

The addition of DBP improved the physicochemical and mechanical properties of the scaffold and formed a large amount of hydroxyapatite (HAp). Also, cell proliferation and differentiation were increased by enhancing cell adhesion.

Conclusion

The porous PCL/DBP scaffolds could provide a favorable microenvironment for cell adhesion and be a promising biomaterial model for bone tissue engineering.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ho-Shui-Ling A, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62. https://doi.org/10.1016/j.biomaterials.2018.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oryan A, et al. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):1–27. https://doi.org/10.1186/1749-799X-9-18.

    Article  Google Scholar 

  3. Almubarak S, et al. Tissue engineering strategies for promoting vascularized bone regeneration. Bone. 2016;83:197–209. https://doi.org/10.1016/j.bone.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  4. Shin SR, Tornetta P III. Donor site morbidity after anterior iliac bone graft harvesting. J Orthop Trauma. 2016;30(6):340–3.

    PubMed  Google Scholar 

  5. Sohn H-S, Oh J-K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23(1):1–7. https://doi.org/10.1186/s40824-019-0157-y.

    Article  CAS  Google Scholar 

  6. Stratton S, et al. Bioactive polymeric scaffolds for tissue engineering. Bioactive Mater. 2016;1(2):93–108. https://doi.org/10.1016/j.bioactmat.2016.11.001.

    Article  Google Scholar 

  7. Zhang Y, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Func Mater. 2019;29(36):1903279. https://doi.org/10.1002/adfm.201903279.

    Article  CAS  Google Scholar 

  8. Donnaloja F, et al. Natural and synthetic polymers for bone scaffolds optimization. Polymers. 2020;12(4):905. https://doi.org/10.3390/polym12040905.

    Article  CAS  PubMed Central  Google Scholar 

  9. Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng, C. 2020;110:110698. https://doi.org/10.1016/j.msec.2020.110698.

    Article  CAS  Google Scholar 

  10. Shao H, et al. Effect of PCL concentration on PCL/CaSiO3 porous composite scaffolds for bone engineering. Ceram Int. 2020;46(9):13082–7. https://doi.org/10.1016/j.ceramint.2020.02.079.

    Article  CAS  Google Scholar 

  11. Unagolla JM, Jayasuriya AC. Enhanced cell functions on graphene oxide incorporated 3D printed polycaprolactone scaffolds. Mater Sci Eng, C. 2019;102:1–11. https://doi.org/10.1016/j.msec.2019.04.026.

    Article  CAS  Google Scholar 

  12. Huong K-H, Teh C-H, Amirul A. Microbial-based synthesis of highly elastomeric biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate) thermoplastic. Int J Biol Macromol. 2017;101:983–95. https://doi.org/10.1016/j.ijbiomac.2017.03.179.

    Article  CAS  PubMed  Google Scholar 

  13. Dwivedi R, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature. J Oral biol Craniofacial Res. 2020;10(1):381–8. https://doi.org/10.1016/j.jobcr.2019.10.003.

    Article  Google Scholar 

  14. Thitiset T, et al. Development of collagen/demineralized bone powder scaffolds and periosteum-derived cells for bone tissue engineering application. Int J Mol Sci. 2013;14(1):2056–71. https://doi.org/10.3390/ijms14012056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan B, et al. In vitro and in vivo study of a novel nanoscale demineralized bone matrix coated PCL/β-TCP scaffold for bone regeneration. Macromol Biosci. 2021;21(3):2000336. https://doi.org/10.1002/mabi.202000336.

    Article  CAS  Google Scholar 

  16. Chen I, et al. Preparation and characterization of moldable demineralized bone matrix/calcium sulfate composite bone graft materials. J Function Biomater. 2021;12(4):56. https://doi.org/10.3390/jfb12040056.

    Article  CAS  Google Scholar 

  17. Aghdasi B, et al. A review of demineralized bone matrices for spinal fusion: the evidence for efficacy. The Surgeon. 2013;11(1):39–48. https://doi.org/10.1016/j.surge.2012.08.001.

    Article  CAS  PubMed  Google Scholar 

  18. Lee S-Y, et al. The effect of titanium with heparin/BMP-2 complex for improving osteoblast activity. Carbohyd Polym. 2013;98(1):546–54. https://doi.org/10.1016/j.carbpol.2013.05.095.

    Article  CAS  Google Scholar 

  19. Russell N, et al. In-vivo performance of seven commercially available demineralized bone matrix fiber and putty products in a rat posterolateral fusion model. Front Surg. 2020;7:10. https://doi.org/10.3389/fsurg.2020.00010.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dechwongya P, et al. Preparation and characterization of demineralized bone matrix/chitosan composite scaffolds for bone tissue engineering. Chulalongkorn Med J. 2019;63(2):119–26.

    Google Scholar 

  21. Cho HH, et al. Comparative study on the effect of the different harvesting sources of demineralized bone particles on the bone regeneration of a composite gellan gum scaffold for bone tissue engineering applications. ACS Appl Bio Mater. 2021;4(2):1900–11. https://doi.org/10.1021/acsabm.0c01549.

    Article  CAS  PubMed  Google Scholar 

  22. Dadgar N, et al. Bioartificial injectable cartilage implants from demineralized bone matrix/PVA and related studies in rabbit animal model. J Biomater Appl. 2021;35(10):1315–26. https://doi.org/10.1177/0885328220976552.

    Article  CAS  PubMed  Google Scholar 

  23. Jung JT, et al. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Membr Sci. 2016;514:250–63. https://doi.org/10.1016/j.memsci.2016.04.069.

    Article  CAS  Google Scholar 

  24. Jin TT, Zhao ZP, Chen KC, Preparation of a poly (vinyl chloride) ultrafiltration membrane through the combination of thermally induced phase separation and non‐solvent‐induced phase separation. Journal of Applied Polymer Science, 2016. 133(5). https://doi.org/10.1002/app.42953

  25. Szustakiewicz K, et al. The influence of hydroxyapatite content on properties of poly (L-lactide)/hydroxyapatite porous scaffolds obtained using thermal induced phase separation technique. Eur Polymer J. 2019;113:313–20. https://doi.org/10.1016/j.eurpolymj.2019.01.073.

    Article  CAS  Google Scholar 

  26. Sola A, et al. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Mater Sci Eng, C. 2019;96:153–65. https://doi.org/10.1016/j.msec.2018.10.086.

    Article  CAS  Google Scholar 

  27. Abzan N, et al. Modulation of the mechanical, physical and chemical properties of polyvinylidene fluoride scaffold via non-solvent induced phase separation process for nerve tissue engineering applications. Eur Polymer J. 2018;104:115–27. https://doi.org/10.1016/j.eurpolymj.2018.05.004.

    Article  CAS  Google Scholar 

  28. Abbasi N, et al. Porous scaffolds for bone regeneration. J Sci: Adv Mater Device. 2020;5(1):1–9.

    Google Scholar 

  29. Grgurevic L, Pecina M, Vukicevic S, Marshall R. Urist and the discovery of bone morphogenetic proteins. Int Orthop. 2017;41(5):1065–9. https://doi.org/10.1007/s00264-017-3402-9.

    Article  PubMed  Google Scholar 

  30. Liu S, et al. Fabrication of polycaprolactone nanofibrous scaffolds by facile phase separation approach. Mater Sci Eng, C. 2014;44:201–8. https://doi.org/10.1016/j.msec.2014.08.012.

    Article  CAS  Google Scholar 

  31. Yang F, Wolke J, Jansen J. Biomimetic calcium phosphate coating on electrospun poly (ɛ-caprolactone) scaffolds for bone tissue engineering. Chem Eng J. 2008;137(1):154–61. https://doi.org/10.1016/j.cej.2007.07.076.

    Article  CAS  Google Scholar 

  32. Meurer SK, et al. Isolation of mature (peritoneum-derived) mast cells and immature (bone marrow-derived) mast cell precursors from mice. PLoS ONE. 2016;11(6):e0158104. https://doi.org/10.1371/journal.pone.0158104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dávila J. et al. Fabrication of PCL/β‐TCP scaffolds by 3D mini‐screw extrusion printing. Journal of Applied Polymer Science, 2016. 133(15). https://doi.org/10.1002/app.43031.

  34. Nicoletti A, et al. Incorporation of nanostructured hydroxyapatite and poly (N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity. Biointerphases. 2015;10(4):041001. https://doi.org/10.1116/1.4931882.

    Article  CAS  PubMed  Google Scholar 

  35. Dozza B, et al. When size matters: differences in demineralized bone matrix particles affect collagen structure, mesenchymal stem cell behavior, and osteogenic potential. J Biomed Mater Res, Part A. 2017;105(4):1019–33. https://doi.org/10.1002/jbm.a.35975.

    Article  CAS  Google Scholar 

  36. Figueiredo M, et al. Influence of hydrochloric acid concentration on the demineralization of cortical bone. Chem Eng Res Des. 2011;89(1):116–24. https://doi.org/10.1016/j.cherd.2010.04.013.

    Article  CAS  Google Scholar 

  37. Cheng M-Q, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6(1):1–14. https://doi.org/10.1038/srep24134.

    Article  CAS  Google Scholar 

  38. Lin T-H, et al. Osteochondral tissue regeneration using a tyramine-modified bilayered PLGA scaffold combined with articular chondrocytes in a porcine model. Int J Mol Sci. 2019;20(2):326. https://doi.org/10.3390/ijms20020326.

    Article  CAS  PubMed Central  Google Scholar 

  39. Yoon S-J, et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs. 2018;16(10):351. https://doi.org/10.3390/md16100351.

    Article  CAS  PubMed Central  Google Scholar 

  40. Zhang K, et al. Effect of microporosity on scaffolds for bone tissue engineering. Regenerative Biomater. 2018;5(2):115–24. https://doi.org/10.1093/rb/rby001.

    Article  CAS  Google Scholar 

  41. Sousa I, et al. Collagen surface modified poly (ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Mater Lett. 2014;134:263–7. https://doi.org/10.1016/j.matlet.2014.06.132.

    Article  CAS  Google Scholar 

  42. Ambekar RS, Kandasubramanian B. Progress in the advancement of porous biopolymer scaffold: tissue engineering application. Ind Eng Chem Res. 2019;58(16):6163–94. https://doi.org/10.1021/acs.iecr.8b05334.

    Article  CAS  Google Scholar 

  43. Adachi T, et al. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials. 2006;27(21):3964–72. https://doi.org/10.1016/j.biomaterials.2006.02.039.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Q, et al. Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity. Int J Biol Macromol. 2015;76:94–101. https://doi.org/10.1016/j.ijbiomac.2015.01.063.

    Article  CAS  PubMed  Google Scholar 

  45. Kang M-H, et al. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration. Acta Biomater. 2019;84:453–67. https://doi.org/10.1016/j.actbio.2018.11.045.

    Article  CAS  PubMed  Google Scholar 

  46. Chavan PN, et al. Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation and growth of apatite. Mater Sci Eng, B. 2010;168(1–3):224–30. https://doi.org/10.1016/j.mseb.2009.11.012.

    Article  CAS  Google Scholar 

  47. Al-Munajjed AA, et al. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J Biomed Mater Res Part B: App Biomater: An Off J Soc Biomater, Japanese Soc Biomater Australian Soc Biomater Korean Soc Biomater. 2009;90(2):584–91. https://doi.org/10.1002/jbm.b.31320.

    Article  CAS  Google Scholar 

  48. Zhang J, et al. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014;10(5):2269–81. https://doi.org/10.1016/j.actbio.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  49. Shahriarpanah S, Nourmohammadi J, Amoabediny G. Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. Int J Biol Macromol. 2016;93:1069–78. https://doi.org/10.1016/j.ijbiomac.2016.09.045.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang L-J, et al. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater Lett. 2004;58(5):719–22. https://doi.org/10.1016/j.matlet.2003.07.009.

    Article  CAS  Google Scholar 

  51. Lei X, et al. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regenerative Biomater. 2019;6(6):361–71. https://doi.org/10.1093/rb/rbz026.

    Article  CAS  Google Scholar 

  52. Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int J Mol Sci. 2021;22(2):944. https://doi.org/10.3390/ijms22020944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Datta N, et al. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005;26(9):971–7. https://doi.org/10.1016/j.biomaterials.2004.04.001.

    Article  CAS  PubMed  Google Scholar 

  54. Cai Y, et al. Collagen grafted 3D polycaprolactone scaffolds for enhanced cartilage regeneration. J Mater Chem B. 2013;1(43):5971–6. https://doi.org/10.1039/C3TB20680G.

    Article  CAS  PubMed  Google Scholar 

  55. Mauney J, et al. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int. 2004;74(5):458–68. https://doi.org/10.1007/s00223-003-0104-7.

    Article  CAS  PubMed  Google Scholar 

  56. Mauney JR, et al. Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. Tissue Eng. 2004;10(1–2):81–92. https://doi.org/10.1089/107632704322791727.

    Article  CAS  PubMed  Google Scholar 

  57. Tomoaia G, Pasca R-D. On the collagen mineralization. A Rev Clujul Med. 2015;88(1):15. https://doi.org/10.15386/cjmed-359.

    Article  Google Scholar 

Download references

Funding

This research was supported by the bilateral cooperation Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2019K2A9A1A06098563).

Author information

Authors and Affiliations

Authors

Contributions

S.I.K. and N.E.K. are equally contributed as first author. S.I.K., N.E.K., S.J.P., and J.H.C. designed and conceived the study. S.J.P. helped write the manuscript. Y.G.L. and G.Y.J. fabricated and characterized the material. S.I.K. and N.E.K. performed the in vitro study. J.E.S. and G.K. gave feedback and opinion on the study. G.K. contributed in reagents and materials and supervised overall study.

Corresponding author

Correspondence to Gilson Khang.

Ethics declarations

Consent to participate

All authors agree to their participation in this study.

Consent for publication

All authors approve the publication of the manuscript in its present form.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.i., Kim, N.E., Park, S. et al. Characterization of non-solvent- and thermal-induced phase separation applied polycaprolactone/demineralized bone matrix scaffold for bone tissue engineering. In vitro models 1, 197–207 (2022). https://doi.org/10.1007/s44164-022-00018-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44164-022-00018-9

Keywords

Navigation