Skip to main content

Advertisement

Identification of Potential Hits against Fungal Lysine Deacetylase Rpd3 via Molecular Docking, Molecular Dynamics Simulation, DFT, In-Silico ADMET and Drug-Likeness Assessment

  • Short Communication
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Fungal histone deacetylases (HDACs) are enzymes known for their crucial role in gene expression regulation through histone deacetylation, leading to chromatin compaction and transcriptional control. Among them, Rpd3, a lysine deacetylase, has been extensively studied for its involvement in chromatin remodeling, gene expression, and various biological processes such as development, cell cycle progression, and stress response. Rpd3's significance in fungal pathogenesis makes it a potential target for antifungal therapies. This study utilized advanced computational tools to identify biogenic molecule hits against a homology-modeled Rpd3 structure. Molecular dynamics simulations verified the stability of the hits while docking studies revealed strong binding affinities (< – 8 kcal/mol) for Rpd3-ZINC000019941755, Rpd3-ZINC000005854718, and Rpd3-ZINC000014762752 complexes. The correlation between binding interactions and HOMO–LUMO properties was established through density functional theory calculations. Additionally, in silico pharmacokinetic and drug-likeness assessments highlighted the potential of these hits as drug candidates. Consequently, ZINC000019941755, ZINC000005854718, and ZINC000014762752 emerge as promising candidates for further investigation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All the necessary data related to work are included in paper. The additional data availability statement is not applicable.

References

  1. Garnaud C, Champleboux M, Maubon D et al (2016) Histone deacetylases and their inhibition in Candida species. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01238

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kuchler K, Jenull S, Shivarathri R, Chauhan N (2016) Fungal KATs/KDACs: a new highway to better antifungal drugs? PLoS Pathog 12:e1005938

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bauer I, Graessle S (2021) Fungal lysine deacetylases in virulence, resistance, and production of small bioactive compounds. Genes 12:1470

    CAS  Google Scholar 

  4. Kmetzsch L (2015) Histone deacetylases: Targets for antifungal drug development. Virulence 6:535. https://doi.org/10.1080/21505594.2015.1049807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li X, Cai Q, Mei H et al (2015) The Rpd3/Hda1 family of histone deacetylases regulates azole resistance in Candida albicans. J Antimicrob Chemother 70:1993–2003. https://doi.org/10.1093/jac/dkv070

    Article  CAS  PubMed  Google Scholar 

  6. Hartl M, Füßl M, Boersema PJ et al (2017) Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 13:949. https://doi.org/10.15252/MSB.20177819

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206. https://doi.org/10.1038/NRM2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254. https://doi.org/10.1038/ng907

    Article  CAS  PubMed  Google Scholar 

  9. McKnight JN, Boerma JW, Breeden LL, Tsukiyama T (2015) Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 59:732–743. https://doi.org/10.1016/j.molcel.2015.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang N, Yang Z, Zhang Z, Liang W (2020) BcRPD3-mediated histone deacetylation is involved in growth and pathogenicity of Botrytis cinerea. Front Microbiol 11:1832. https://doi.org/10.3389/FMICB.2020.01832/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brandão FAS, Derengowski LS, Albuquerque P et al (2015) Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence 6:618–630. https://doi.org/10.1080/21505594.2015.1038014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma XJ, Yang CP, Xia DA (2016) Characterization and expression analysis of histone deacetylases family RPD3/HDA1 in Populus trichocarpa. Biol Plant 60:235–243. https://doi.org/10.1007/S10535-015-0579-X/METRICS

    Article  CAS  Google Scholar 

  13. Mak KK, Pichika MR (2019) Artificial intelligence in drug development: present status and future prospects. Drug Discov Today 24:773–780. https://doi.org/10.1016/J.DRUDIS.2018.11.014

    Article  PubMed  Google Scholar 

  14. Kelley EW (2022) Computer-aided drug design project for introductory high school students. J Chem Educ. https://doi.org/10.1021/ACS.JCHEMED.2C00989/ASSET/IMAGES/MEDIUM/ED2C00989_0008.GIF

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184. https://doi.org/10.1016/J.CSBJ.2016.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srinivas Reddy A, Priyadarshini Pati S, Praveen Kumar P et al (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8:329–351. https://doi.org/10.2174/138920307781369427

    Article  PubMed  Google Scholar 

  17. Sadybekov AV, Katritch V (2023) Computational approaches streamlining drug discovery. Nature 616(7958):673–685. https://doi.org/10.1038/s41586-023-05905-z

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP (2019) Key topics in molecular docking for drug design. Int J Mol Sci. https://doi.org/10.3390/IJMS20184574

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331. https://doi.org/10.3390/IJMS20184331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salo-Ahen OMH, Alanko I, Bhadane R et al (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 2021 9:71. https://doi.org/10.3390/PR9010071

    Article  Google Scholar 

  21. Salmaso V, Moro S (2018) Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Front Pharmacol 9:923. https://doi.org/10.3389/FPHAR.2018.00923/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  22. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:1–9. https://doi.org/10.1186/1741-7007-9-71/FIGURES/4

    Article  Google Scholar 

  23. Shaheena R (2022) Role of DFT in drug design: a mini review. Drug Des 11:1–4. https://doi.org/10.35248/2169-0138.22.11.216

    Article  Google Scholar 

  24. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2(3):192–204. https://doi.org/10.1038/nrd1032

    Article  PubMed  Google Scholar 

  25. Wan H (2013) What ADME tests should be conducted for preclinical studies? ADMET DMPK 1:19–28. https://doi.org/10.5599/ADMET.1.3.9

    Article  Google Scholar 

  26. Stouch TR, Kenyon JR, Johnson SR et al (2003) In silico ADME/Tox: why models fail. J Comput Aided Mol Des 17:83–92

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515. https://doi.org/10.1017/S0033583515000190

    Article  PubMed  Google Scholar 

  28. Rathod S, Chavan P, Mahuli D et al (2023) Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. J Mol Model 29:1–23. https://doi.org/10.1007/S00894-023-05521-8

    Article  Google Scholar 

  29. Rathod S, Shinde K, Porlekar J et al (2022) Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: an in silico molecular docking and dynamic approach. ACS Omega 8:391–409. https://doi.org/10.1021/acsomega.2c04837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nitulescu M, Alves de Oliveira T, Pires da Silva M et al (2023) Virtual screening algorithms in drug discovery: a review focused on machine and deep learning methods. Drugs Drug Candidates 2:311–334. https://doi.org/10.3390/DDC2020017

    Article  Google Scholar 

  31. Schaduangrat N, Lampa S, Simeon S et al (2020) (2020) Towards reproducible computational drug discovery. J Cheminform 12(1):1–30. https://doi.org/10.1186/S13321-020-0408-X

    Article  Google Scholar 

  32. Xiang M, Cao Y, Fan W et al (2012) Computer-aided drug design: lead discovery and optimization. Comb Chem High Throughput Screen 15:328–337. https://doi.org/10.2174/138620712799361825

    Article  CAS  PubMed  Google Scholar 

  33. O’boyleBanckJames NMMCA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:1–14. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  Google Scholar 

  34. Dora EG, Rudin N, Martell JR et al (1999) RPD3 (REC3) mutations affect mitotic recombination in Saccharomyces cerevisiae. Curr Genet 35:68–76. https://doi.org/10.1007/S002940050434/METRICS

    Article  CAS  PubMed  Google Scholar 

  35. Apweiler R, Martin MJ, O’Donovan C et al (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75. https://doi.org/10.1093/NAR/GKR981

    Article  CAS  Google Scholar 

  36. Bordoli L, Kiefer F, Arnold K et al (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13. https://doi.org/10.1038/nprot.2008.197

    Article  CAS  PubMed  Google Scholar 

  37. Abdullahi M, Adeniji SE, Arthur DE, Haruna A (2021) Homology modeling and molecular docking simulation of some novel imidazo[1,2-a]pyridine-3-carboxamide (IPA) series as inhibitors of Mycobacterium tuberculosis. J Genet Eng Biotechnol. https://doi.org/10.1186/s43141-020-00102-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roman Laskowski BA, Macarthur MW, Thornton JM (1983) Computer Programs PROCHECK: a program to check the stereochemicai quality of protein structures. J Appl Crystallogr 26:283–291

    Article  Google Scholar 

  39. Wiederstein M, Sippl MJ (2007) ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm290

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bagal VK, Rathod SS, Mulla MM et al (2023) Exploration of bioactive molecules from Tinospora cordifolia and Actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Nat Prod Res. https://doi.org/10.1080/14786419.2023.2165076

    Article  PubMed  Google Scholar 

  41. BIOVIA (2020) Discovery studio visualizer. Dassault Systemes, San Diego

  42. Pol-Fachin L, Fernandes CL, Verli H (2009) GROMOS96 43a1 performance on the characterization of glycoprotein conformational ensembles through molecular dynamics simulations. Carbohydr Res 344:491–500. https://doi.org/10.1016/j.carres.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  43. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  ADS  Google Scholar 

  44. NosÉ S (2002) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 100:191–198. https://doi.org/10.1080/00268970110089108

    Article  ADS  Google Scholar 

  45. Huang C, Li C, Choi PYK et al (2011) A novel method for molecular dynamics simulation in the isothermal-isobaric ensemble. Mol Phys 109:191–202. https://doi.org/10.1080/00268976.2010.513345

    Article  ADS  CAS  Google Scholar 

  46. Bepari AK, Reza HM (2021) Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation. PeerJ 9:e11261. https://doi.org/10.7717/peerj.11261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gorai S, Junghare V, Kundu K et al (2022) Synthesis of dihydrobenzofuro[3,2-b]chromenes as potential 3CLpro inhibitors of SARS-CoV-2: a molecular docking and molecular dynamics study. ChemMedChem 17:e202100782. https://doi.org/10.1002/cmdc.202100782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  ADS  CAS  Google Scholar 

  49. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  ADS  CAS  Google Scholar 

  50. Kushwaha PP, Singh AK, Bansal T et al (2021) Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front Cell Infect Microbiol 11:730288. https://doi.org/10.3389/fcimb.2021.730288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miar M, Shiroudi A, Pourshamsian K et al (2021) Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: solvent and substituent effects. J Chem Res 45:147–158

    Article  CAS  Google Scholar 

  52. Rathod S, Dey S, Pawar S et al (2023) Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2225099

    Article  PubMed  Google Scholar 

  53. Elkaeed EB, Yousef RG, Elkady H et al (2022) Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: in vitro anticancer and VEGFR-2 inhibitory effects. Molecules. https://doi.org/10.3390/molecules27144606

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rochlani S, Bhatia M, Rathod S et al (2023) Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach. Nat Prod Res. https://doi.org/10.1080/14786419.2023.2202398

    Article  PubMed  Google Scholar 

  55. Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  56. Snyder HD, Kucukkal TG (2021) Computational chemistry activities with avogadro and ORCA. J Chem Educ 98:1335–1341. https://doi.org/10.1021/acs.jchemed.0c00959

    Article  CAS  Google Scholar 

  57. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules OPEN. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. DE Pires V, Blundell TL, Ascher DB, 1ga UK, (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corso G, Jing B, Stark H et al (2023) Blind protein-ligand docking with diffusion-based deep generative models. Biophys J 122:143a. https://doi.org/10.1016/j.bpj.2022.11.937

    Article  Google Scholar 

  60. Yu Y, Lu S, Gao Z, et al (2023) Do deep learning models really outperform traditional approaches in molecular docking? Biomolecules 07134

  61. Hetényi C, Van Der Spoel D (2006) Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 580:1447–1450. https://doi.org/10.1016/J.FEBSLET.2006.01.074

    Article  PubMed  Google Scholar 

  62. Alex A, Millan DS, Perez M et al (2011) Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. Medchemcomm 2:669–674. https://doi.org/10.1039/c1md00093d

    Article  CAS  Google Scholar 

  63. Bitencourt-Ferreira G, Veit-Acosta M, de Azevedo WF (2019) Hydrogen bonds in protein-ligand complexes. Methods Mol Biol 2053:93–107. https://doi.org/10.1007/978-1-4939-9752-7_7

    Article  CAS  PubMed  Google Scholar 

  64. Pantsar T, Poso A (2018) Binding affinity via docking: fact and fiction. Molecules 23:1899. https://doi.org/10.3390/MOLECULES23081899

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pace CN, Fu H, Fryar KL et al (2014) Contribution of hydrogen bonds to protein stability. Protein Sci 23:652–661. https://doi.org/10.1002/pro.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347:6294. https://doi.org/10.1038/347631a0. (347:631–639)

    Article  Google Scholar 

  67. Martin Karplus J, McCammon A (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  PubMed  Google Scholar 

  68. Zhao H, Caflisch A (2015) Molecular dynamics in drug design. Eur J Med Chem 91:4–14. https://doi.org/10.1016/j.ejmech.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  69. Bopp PA, Hawlicka E, Fritzsche S (2018) The Hitchhiker’s guide to molecular dynamics: a lecture companion, mostly for master’s and PhD students interested in using molecular dynamics simulations. ChemTexts. https://doi.org/10.1007/s40828-018-0056-1

    Article  Google Scholar 

  70. Adcock SA, McCammon JA (2006) Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem Rev 106:1589–1615. https://doi.org/10.1021/cr040426m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59:4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684

    Article  CAS  PubMed  Google Scholar 

  72. Mumit MA, Pal TK, Alam MA et al (2020) DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128715

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket Rathod.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest with respect to the authorship, research work, and/or publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, S., Bhande, D., Pawar, S. et al. Identification of Potential Hits against Fungal Lysine Deacetylase Rpd3 via Molecular Docking, Molecular Dynamics Simulation, DFT, In-Silico ADMET and Drug-Likeness Assessment. Chemistry Africa 7, 1151–1164 (2024). https://doi.org/10.1007/s42250-023-00766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00766-5

Keywords