Skip to main content
Log in

Acoustic Emission-Feedback Planar Ultrasound System for Localized Blood–Brain Barrier Opening Monitoring

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Transcranial pulsed ultrasound with microbubbles has been shown to temporally open the blood–brain barrier (BBB) to allow therapeutic agents to penetrate into the CNS for improved therapeutic efficacy. Recent studies have shown the feasibility of using passive cavitation detection (PCD) for monitoring or real-time control of the BBB opening in a focused ultrasound device. Planar ultrasound has unique advantages including the capability to create larger BBB openings in a single exposure, simple operation, and reduced reliance on medical imaging for sonication guidance. This study proposes a novel planar ultrasound apparatus design that can provide real-time analysis for ultrasound BBB opening monitoring. In-vitro tube phantom experiments were conducted to characterize the dependence of the energy spectrum density (ESD) change with microbubble infusion. In-vivo experiments characterized the dependence of ESD change on BBB opening. We showed that the proposed configuration provide superior ESD detection than traditional water-immersed PCD arrangement and can well correlated with the cavitation activity either in the in vitro or in vivo measurement. The ESD response corresponds well to the occurrence of BBB-opening. In animal groups which demonstrated successful BBB-opening, the peak ESD was significantly higher (12.22 ± 7.019 and 14.763 ± 11.812 dB in 0.332 and 0.463-MPa exposure). The 5-dB ESD level was found to be a valid threshold level to discriminate between the BBB-intact and BBB-opened groups to provide both high detection sensitivity (100%) and specificity (88%). These results may facilitate the design of a planar ultrasound treatment apparatus for BBB opening and drug delivery to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., & Vykhodtseva, N. (2005). Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage, 24(1), 12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046.

    Article  Google Scholar 

  2. Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology, 220(3), 640–646.

    Article  Google Scholar 

  3. Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochemical and Biophysical Research Communications, 340(4), 1085–1090. https://doi.org/10.1016/j.bbrc.2005.12.112.

    Article  Google Scholar 

  4. Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences of the USA, 103(31), 11719–11723. https://doi.org/10.1073/pnas.0604318103.

    Article  Google Scholar 

  5. Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., et al. (2006). Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. Journal of Neurosurgery, 105(3), 445–454. https://doi.org/10.3171/jns.2006.105.3.445.

    Article  Google Scholar 

  6. McDannold, N., Clement, G. T., Black, P., Jolesz, F., & Hynynen, K. (2010). Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: Initial findings in 3 patients. Neurosurgery, 66(2), 323–332. https://doi.org/10.1227/01.neu.0000360379.95800.2f.

    Article  Google Scholar 

  7. Treat, L. H., McDannold, N., Vykhodtseva, N., Zhang, Y., Tam, K., & Hynynen, K. (2007). Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. International Journal of Cancer, 121(4), 901–907. https://doi.org/10.1002/ijc.22732.

    Article  Google Scholar 

  8. Liu, H. L., Hua, M. Y., Chen, P. Y., Chu, P. C., Pan, C. H., Yang, H. W., et al. (2010). Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology, 255(2), 415–425. https://doi.org/10.1148/radiol.10090699.

    Article  Google Scholar 

  9. Chen, P. Y., Liu, H. L., Hua, M. Y., Yang, H. W., Huang, C. Y., Chu, P. C., et al. (2010). Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncology, 12(10), 1050–1060. https://doi.org/10.1093/neuonc/noq054.

    Article  Google Scholar 

  10. Liu, H. L., Hua, M. Y., Yang, H. W., Huang, C. Y., Chu, P. C., Wu, J. S., et al. (2010). Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proceedings of the National Academy of Sciences of the USA, 107(34), 15205–15210. https://doi.org/10.1073/pnas.1003388107.

    Article  Google Scholar 

  11. Fan, C. H., Ting, C. Y., Lin, C. Y., Chan, H. L., Chang, Y. C., Chen, Y. Y., et al. (2016). Noninvasive, targeted, and non-viral ultrasound-mediated GDNF-plasmid delivery for treatment of Parkinson’s disease. Scientific Reports, 6, 19579. https://doi.org/10.1038/srep19579.

    Article  Google Scholar 

  12. Lin, C. Y., Hsieh, H. Y., Chen, C. M., Wu, S. R., Tsai, C. H., Huang, C. Y., et al. (2016). Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. Journal of Controlled Release, 235, 72–81. https://doi.org/10.1016/j.jconrel.2016.05.052.

    Article  Google Scholar 

  13. McDannold, N., Vykhodtseva, N., & Hynynen, K. (2006). Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity. Physics in Medicine & Biology, 51(4), 793–807. https://doi.org/10.1088/0031-9155/51/4/003.

    Article  Google Scholar 

  14. Tung, Y. S., Vlachos, F., Choi, J. J., Deffieux, T., Selert, K., & Konofagou, E. E. (2010). In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Physics in Medicine & Biology, 55(20), 6141–6155. https://doi.org/10.1088/0031-9155/55/20/007.

    Article  Google Scholar 

  15. O’Reilly, M. A., & Hynynen, K. (2010). A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. IEEE Transactions on Biomedical Engineering, 57(9), 2286–2294. https://doi.org/10.1109/TBME.2010.2050483.

    Article  Google Scholar 

  16. O’Reilly, M. A., & Hynynen, K. (2012). Blood-brain barrier: Real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology, 263(1), 96–106. https://doi.org/10.1148/radiol.11111417.

    Article  Google Scholar 

  17. Arvanitis, C. D., Livingstone, M. S., Vykhodtseva, N., & McDannold, N. (2012). Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS ONE, 7(9), e45783. https://doi.org/10.1371/journal.pone.0045783.

    Article  Google Scholar 

  18. Huang, Y., Alkins, R., Schwartz, M. L., & Hynynen, K. (2017). Opening the blood-brain barrier with MR imaging-guided focused ultrasound: Preclinical testing on a trans-human skull porcine model. Radiology, 282(1), 123–130. https://doi.org/10.1148/radiol.2016152154.

    Article  Google Scholar 

  19. Huang, Y., & Hynynen, K. (2011). MR-guided focused ultrasound for brain ablation and blood-brain barrier disruption. Methods in Molecular Biology, 711, 579–593. https://doi.org/10.1007/978-1-61737-992-5_30.

    Article  Google Scholar 

  20. Xia, J., Tsui, P. H., & Liu, H. L. (2016). Low-pressure burst-mode focused ultrasound wave reconstruction and mapping for blood-brain barrier opening: A preclinical examination. Scientific Reports, 6, 27939. https://doi.org/10.1038/srep27939.

    Article  Google Scholar 

  21. Fan, C. H., Lin, W. H., Ting, C. Y., Chai, W. Y., Yen, T. C., Liu, H. L., et al. (2014). Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood-brain barrier opening. Theranostics, 4(10), 1014–1025. https://doi.org/10.7150/thno.9575.

    Article  Google Scholar 

  22. Wei, K. C., Tsai, H. C., Lu, Y. J., Yang, H. W., Hua, M. Y., Wu, M. F., et al. (2013). Neuronavigation-guided focused ultrasound-induced blood-brain barrier opening: A preliminary study in swine. AJNR. American Journal of Neuroradiology, 34(1), 115–120. https://doi.org/10.3174/ajnr.A3150.

    Article  Google Scholar 

  23. Van Ruijssevelt, L., Smirnov, P., Yudina, A., Bouchaud, V., Voisin, P., & Moonen, C. (2013). Observations on the viability of C6-glioma cells after sonoporation with low-intensity ultrasound and microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(1), 34–45. https://doi.org/10.1109/TUFFC.2013.2535.

    Google Scholar 

  24. Pan, H., Zhou, Y., Sieling, F., Shi, J., Cui, J., & Deng, C. (2004). Sonoporation of cells for drug and gene delivery. Conference of the Proceedings of the IEEE Engineering in Medicine and Biology Society, 5, 3531–3534. https://doi.org/10.1109/IEMBS.2004.1403993.

    Google Scholar 

  25. Feril, L. B., Jr. (2009). Ultrasound-mediated gene transfection. Methods in Molecular Biology, 542, 179–194. https://doi.org/10.1007/978-1-59745-561-9_10.

    Article  Google Scholar 

  26. Taniyama, Y., Tachibana, K., Hiraoka, K., Aoki, M., Yamamoto, S., Matsumoto, K., et al. (2002). Development of safe and efficient novel nonviral gene transfer using ultrasound: Enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Therapy, 9(6), 372–380. https://doi.org/10.1038/sj.gt.3301678.

    Article  Google Scholar 

  27. Beccaria, K., Canney, M., Goldwirt, L., Fernandez, C., Adam, C., Piquet, J., et al. (2013). Opening of the blood-brain barrier with an unfocused ultrasound device in rabbits. Journal of Neurosurgery, 119(4), 887–898. https://doi.org/10.3171/2013.5.JNS122374.

    Article  Google Scholar 

  28. Goldwirt, L., Canney, M., Horodyckid, C., Poupon, J., Mourah, S., Vignot, A., et al. (2016). Enhanced brain distribution of carboplatin in a primate model after blood-brain barrier disruption using an implantable ultrasound device. Cancer Chemotherapy and Pharmacology, 77(1), 211–216. https://doi.org/10.1007/s00280-015-2930-5.

    Article  Google Scholar 

  29. Carpentier, A., Canney, M., Vignot, A., Reina, V., Beccaria, K., Horodyckid, C., et al. (2016). Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aaf6086.

    Google Scholar 

  30. Blackstock, D. T. (2000). Fundamentals of physical acoustics. New York: Wiley.

    Google Scholar 

  31. Tsai, C. H., Zhang, J. W., Liao, Y. Y., & Liu, H. L. (2016). Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: Implementation of confocal dual-frequency piezoelectric transducers. Physics in Medicine & Biology, 61(7), 2926–2946. https://doi.org/10.1088/0031-9155/61/7/2926.

    Article  Google Scholar 

  32. White, P. J. (2006). Transcranial focused ultrasound surgery. Topics in Magnetic Resonance Imaging, 17(3), 165–172. https://doi.org/10.1097/RMR.0b013e31803774a3.

    Article  Google Scholar 

  33. Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. Journal of the Acoustical Society of America, 104(3 Pt 1), 1705–1715.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology, Taiwan, under Grants Nos. 105-2221-E-182-022, 106-2221-E-182-002, 105-2923-B-002-001-MY3, Taiwan, French National Research Agency ANR-MOST project under Grant No. ANR-15-CE19-0003, and Chang Gung Memorial Hospital, Taiwan, under Grants Nos. CIRPD2E0051-53, CMRPD2D0111-13. We also thank the facility support from Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CH., Chen, KT., Lin, YX. et al. Acoustic Emission-Feedback Planar Ultrasound System for Localized Blood–Brain Barrier Opening Monitoring. J. Med. Biol. Eng. 39, 277–286 (2019). https://doi.org/10.1007/s40846-018-0406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-018-0406-x

Keywords