Skip to main content

Advertisement

Log in

Leptin and ghrelin dynamics: unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. In recent years, there has been growing interest in the role of hunger and satiety hormones such as ghrelin and leptin in the development and progression of T2DM. In this context, the present literature review aims to provide a comprehensive overview of the current understanding of how ghrelin and leptin influences food intake and maintain energy balance and its implications in the pathophysiology of T2DM.

Methods

A thorough literature search was performed using PubMed and Google Scholar to choose the studies that associated leptin and ghrelin with T2DM. Original articles and reviews were included, letters to editors and case reports were excluded.

Results

This narrative review article provides a comprehensive summary on mechanism of action of leptin and ghrelin, its association with obesity and T2DM, how they regulate energy and glucose homeostasis and potential therapeutic implications of leptin and ghrelin in managing T2DM.

Conclusion

Ghrelin, known for its appetite-stimulating effects, and leptin, a hormone involved in the regulation of energy balance, have been implicated in insulin resistance and glucose metabolism. Understanding the complexities of ghrelin and leptin interactions in the context of T2DM may offer insights into novel therapeutic strategies for this prevalent metabolic disorder. Further research is warranted to elucidate the molecular mechanisms underlying these hormone actions and to explore their clinical implications for T2DM prevention and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol. 2023;14:1161521. https://doi.org/10.3389/fendo.2023.1161521

    Article  Google Scholar 

  2. Ogurtsova K, Guariguata L, Barengo NC, Ruiz PL-D, Sacre JW, Karuranga S, et al. IDF diabetes Atlas: global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res Clin Pract. 2022;183:109118. https://doi.org/10.1016/j.diabres.2021.109118

    Article  PubMed  Google Scholar 

  3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119

  4. Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of diabetes 2016. Hindawi. 2016. https://doi.org/10.1155/2016/6989453

    Article  Google Scholar 

  5. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40. https://doi.org/10.1001/jama.2009.726

    Article  CAS  PubMed  Google Scholar 

  6. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133(2):187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geary N. Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav. 2004;81(5):719–33. https://doi.org/10.1016/j.physbeh.2004.04.013

    Article  CAS  PubMed  Google Scholar 

  8. Churm R, Davies J, Stephens J, Prior S. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18(2):140–8. https://doi.org/10.1111/obr.12474

    Article  CAS  PubMed  Google Scholar 

  9. Poykko SM, Kellokoski E, Horkko S, Kauma H, Kesaniemi YA, Ukkola O. Low plasma ghrelin is associated with insulin resistance, hypertension, and the prevalence of type 2 diabetes. Diabetes. 2003;52(10):2546–53. https://doi.org/10.2337/diabetes.52.10.2546

    Article  PubMed  Google Scholar 

  10. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39(7):1176–88. https://doi.org/10.1038/aps.2018.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Münzberg H, Björnholm M, Bates S, Myers M. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005;62:642–52. https://doi.org/10.1007/s00018-004-4432-1

    Article  CAS  PubMed  Google Scholar 

  12. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metabolic Syndrome Obesity: Targets Therapy. 2019:191–8. https://doi.org/10.2147/DMSO.S182406

  13. Bouloumié A, Drexler HC, Lafontan M, Busse R. Leptin, the product of ob gene, promotes angiogenesis. Circul Res. 1998;83(10):1059–66. https://doi.org/10.1161/01.RES.83.10.1059

    Article  Google Scholar 

  14. Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56. https://doi.org/10.1146/annurev.physiol.70.113006.100707

    Article  CAS  PubMed  Google Scholar 

  15. Robertson SA, Leinninger GM, Myers MG Jr. Molecular and neural mediators of leptin action. Physiol Behav. 2008;94(5):637–42. https://doi.org/10.1016/j.physbeh.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:585887. https://doi.org/10.3389/fendo.2021.585887

    Article  Google Scholar 

  17. Sanchez-Margalet V, Martin-Romero C. Human leptin signaling in human peripheral blood mononuclear cells: activation of the JAK-STAT pathway. Cell Immunol. 2001;211(1):30–6. https://doi.org/10.1006/cimm.2001.1815

    Article  CAS  PubMed  Google Scholar 

  18. St-Pierre J, Tremblay ML. Modulation of leptin resistance by protein tyrosine phosphatases. Cell Metabol. 2012;15(3):292–7. https://doi.org/10.1016/j.cmet.2012.02.004

    Article  CAS  Google Scholar 

  19. Amitani M, Asakawa A, Amitani H, Inui A. The role of leptin in the control of insulin-glucose axis. Front NeuroSci. 2013;7:51. https://doi.org/10.3389/fnins.2013.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Münzberg H, Morrison CD. Structure, production and signaling of leptin. Metabolism. 2015;64(1):13–23. https://doi.org/10.1016/j.metabol.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, et al. Structural insights into the mechanism of leptin receptor activation. Nat Commun. 2023;14(1):1797. https://doi.org/10.1038/s41467-023-37169-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morris DL, Rui L. Recent advances in understanding leptin signaling and leptin resistance. Am J Physiology-Endocrinology Metabolism. 2009;297(6):E1247–59. https://doi.org/10.1152/ajpendo.00274.2009

    Article  CAS  Google Scholar 

  23. Morris A. Mechanisms of leptin resistance revealed. Nat Reviews Endocrinol. 2018;14(11):628. https://doi.org/10.1038/s41574-018-0091-4

    Article  CAS  Google Scholar 

  24. Scarpace PJ, Zhang Y. Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiology-Regulatory Integr Comp Physiol. 2009;296(3):R493–500. https://doi.org/10.1152/ajpregu.90669.2008

    Article  CAS  Google Scholar 

  25. Zhang Y, Scarpace PJ. The role of leptin in leptin resistance and obesity. Physiol Behav. 2006;88(3):249–56. https://doi.org/10.1016/j.physbeh.2006.05.038

    Article  CAS  PubMed  Google Scholar 

  26. Hosoi T, Sasaki M, Miyahara T, Hashimoto C, Matsuo S, Yoshii M, et al. Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol. 2008;74(6):1610–9. https://doi.org/10.1124/mol.108.050070

    Article  CAS  PubMed  Google Scholar 

  27. Tups A. Physiological models of leptin resistance. J Neuroendocrinol. 2009;21(11):961–71. https://doi.org/10.1111/j.1365-2826.2009.01916.x

    Article  CAS  PubMed  Google Scholar 

  28. Wabitsch M, Funcke J-B, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin K-M, et al. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372(1):48–54. https://doi.org/10.1056/NEJMoa1406653

    Article  CAS  PubMed  Google Scholar 

  29. Friedman J. Leptin at 20: an overview. J Endocrinol. 2014;223(1):T1–8. https://doi.org/10.1530/JOE-14-0405

    Article  CAS  PubMed  Google Scholar 

  30. Dietrich MO, Spuch C, Antequera D, Rodal I, de Yébenes JG, Molina JA, et al. Megalin mediates the transport of leptin across the blood-CSF barrier. Neurobiol Aging. 2008;29(6):902–12. https://doi.org/10.1016/j.neurobiolaging.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  31. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes. 2004;53(5):1253–60. https://doi.org/10.2337/diabetes.53.5.1253

    Article  CAS  PubMed  Google Scholar 

  32. Hsuchou H, Kastin AJ, Mishra PK, Pan W. C-reactive protein increases BBB permeability: implications for obesity and neuroinflammation. Cell Physiol Biochem. 2012;30(5):1109–19. https://doi.org/10.1159/000343302

    Article  CAS  PubMed  Google Scholar 

  33. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6. https://doi.org/10.1126/science.7624777

    Article  CAS  PubMed  Google Scholar 

  34. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu S-M, Tartaglia L, et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science. 1996;271(5251):994–6. https://doi.org/10.1126/science.271.5251.994

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Zhou Y, Carter-Su C, Myers MG Jr, Rui L. SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and-independent mechanisms. Mol Endocrinol. 2007;21(9):2270–81. https://doi.org/10.1210/me.2007-0111

    Article  CAS  PubMed  Google Scholar 

  36. Baumann H, Morella KK, White DW, Dembski M, Bailon PS, Kim H et al. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proceedings of the National Academy of Sciences. 1996;93(16):8374-8. https://doi.org/10.1073/pnas.93.16.8374

  37. Maffei á, Halaas J, Ravussin E, Pratley R, Lee G, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155–61. https://doi.org/10.1038/nm1195-1155

    Article  Google Scholar 

  38. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci. 1997;94(16):8878–83. https://doi.org/10.1073/pnas.94.16.8878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5. https://doi.org/10.1056/NEJM199602013340503

    Article  CAS  PubMed  Google Scholar 

  40. Morrison CD. Leptin resistance and the response to positive energy balance. Physiol Behav. 2008;94(5):660–3. https://doi.org/10.1016/j.physbeh.2008.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stefan N, Vozarova B, Del Parigi A, Ossowski V, Thompson DB, Hanson R, et al. The Gln223Arg polymorphism of the leptin receptor in Pima indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes. 2002;26(12):1629–32. https://doi.org/10.1038/sj.ijo.0802161

    Article  CAS  Google Scholar 

  42. Ravussin E, Pratley RE, Maffei M, Wang H, Friedman JM, Bennett PH, et al. Relatively low plasma leptin concentrations precede weight gain in Pima indians. Nat Med. 1997;3(2):238–40. https://doi.org/10.1038/nm0297-238

    Article  CAS  PubMed  Google Scholar 

  43. Münzberg H. Leptin-signaling pathways and leptin resistance. Front Eat Weight Regul. 2010;63:123–32. https://doi.org/10.1159/000264400

    Article  Google Scholar 

  44. Mark AL. Selective leptin resistance revisited. Am J Physiology-Regulatory Integr Comp Physiol. 2013;305(6):R566–81. https://doi.org/10.1152/ajpregu.00180.2013

    Article  CAS  Google Scholar 

  45. Knight ZA, Hannan KS, Greenberg ML, Friedman JM. Hyperleptinemia is required for the development of leptin resistance. PLoS ONE. 2010;5(6):e11376. https://doi.org/10.1371/journal.pone.0011376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shapiro A, Tümer N, Gao Y, Cheng K-Y, Scarpace PJ. Prevention and reversal of diet-induced leptin resistance with a sugar-free diet despite high fat content. Br J Nutr. 2011;106(3):390–7. https://doi.org/10.1017/S000711451100033X

    Article  CAS  PubMed  Google Scholar 

  47. Haring SJ, Harris RB. The relation between dietary fructose, dietary fat and leptin responsiveness in rats. Physiol Behav. 2011;104(5):914–22. https://doi.org/10.1016/j.physbeh.2011.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shapiro A, Mu W, Roncal C, Cheng K-Y, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J physiology-regulatory Integr Comp Physiol. 2008;295(5):R1370–5. https://doi.org/10.1152/ajpregu.00195.2008

    Article  CAS  Google Scholar 

  49. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiology-Endocrinology Metabolism. 2010. https://doi.org/10.1152/ajpendo.00283.2010

    Article  Google Scholar 

  50. Spezani R, da Silva RR, Martins FF, de Souza Marinho T, Aguila MB, Mandarim-de-Lacerda CA. Intermittent fasting, adipokines, insulin sensitivity, and hypothalamic neuropeptides in a dietary overload with high-fat or high-fructose diet in mice. J Nutr Biochem. 2020;83:108419. https://doi.org/10.1016/j.jnutbio.2020.108419

    Article  CAS  PubMed  Google Scholar 

  51. Moonishaa TM, Nanda SK, Shamraj M, Sivaa R, Sivakumar P, Ravichandran K. Evaluation of leptin as a marker of insulin resistance in type 2 diabetes mellitus. Int J Appl Basic Med Res. 2017;7(3):176. https://doi.org/10.4103/ijabmr.IJABMR_278_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020;21(16):5887. https://doi.org/10.3390/ijms21165887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Poetsch MS, Strano A, Guan K. Role of leptin in cardiovascular diseases. Front Endocrinol. 2020;11:354. https://doi.org/10.3389/fendo.2020.00354

    Article  Google Scholar 

  54. Friedman JM. Leptin and the endocrine control of energy balance. Nat Metabolism. 2019;1(8):754–64. https://doi.org/10.1038/s42255-019-0095-y

    Article  CAS  Google Scholar 

  55. Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, et al. Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion. Diabetes. 2002;51(1):124–9. https://doi.org/10.2337/diabetes.51.1.124

    Article  CAS  PubMed  Google Scholar 

  56. De La Cour CD, Björkqvist M, Sandvik A, Bakke I, Zhao C-M, Chen D, et al. A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept. 2001;99(2–3):141–50. https://doi.org/10.1016/s0167-0115(01)00243-9

    Article  Google Scholar 

  57. Nunez-Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol. 2021;231(3):e13588. https://doi.org/10.1111/apha.13588

    Article  CAS  Google Scholar 

  58. Seim I, Herington AC, Chopin LK. New insights into the molecular complexity of the ghrelin gene locus. Cytokine Growth Factor Rev. 2009;20(4):297–304. https://doi.org/10.1016/j.cytogfr.2009.07.006

    Article  PubMed  Google Scholar 

  59. Gahete MD, Rincon-Fernandez D, Villa-Osaba A, Hormaechea-Agulla D, Ibanez-Costa A, Martinez-Fuentes AJ, et al. Ghrelin gene products, receptors, and GOAT enzyme: biological and pathophysiological insight. J Endocrinol. 2014;220(1):R1–24. https://doi.org/10.1530/JOE-13-0391

    Article  CAS  PubMed  Google Scholar 

  60. Perelló-Amorós M, Vélez EJ, Vela-Albesa J, Sánchez-Moya A, Riera-Heredia N, Hedén I, et al. Ghrelin and its receptors in gilthead sea bream: nutritional regulation. Front Endocrinol. 2018;9:399. https://doi.org/10.3389/fendo.2018.00399

    Article  Google Scholar 

  61. Davenport AP, Bonner TI, Foord SM, Harmar AJ, Neubig RR, Pin J-P, et al. International union of pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev. 2005;57(4):541–6. https://doi.org/10.1124/pr.57.4.1

    Article  CAS  PubMed  Google Scholar 

  62. Hosoda H, Kojima M, Mizushima T, Shimizu S, Kangawa K. Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem. 2003;278(1):64–70. https://doi.org/10.1074/jbc.M205366200

    Article  CAS  PubMed  Google Scholar 

  63. Smith JM, Maas JA, Garnsworthy PC, Owen MR, Coombes S, Pillay TS, et al. Mathematical modeling of glucose homeostasis and its relationship with energy balance and body fat. Obesity. 2009;17(4):632. https://doi.org/10.1038/oby.2008.604

    Article  PubMed  Google Scholar 

  64. Wiedmer P, Nogueiras R, Broglio F, D’alessio D, Tschöp MH. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(10):705–12. https://doi.org/10.1038/ncpendmet0625

    Article  CAS  PubMed  Google Scholar 

  65. Camina J. Cell biology of the ghrelin receptor. J Neuroendocrinol. 2006;18(1):65–76. https://doi.org/10.1111/j.1365-2826.2005.01379.x

    Article  CAS  PubMed  Google Scholar 

  66. Nogueiras R, Perez-Tilve D, Wortley K, Tschop M. Growth hormone secretagogue (ghrelin-) receptors-a complex drug target for the regulation of body weight. CNS Neurol Disorders-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disorders). 2006;5(3):335–43. https://doi.org/10.2174/187152706777452227

    Article  CAS  Google Scholar 

  67. Date Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123(4):1120–8. https://doi.org/10.1053/gast.2002.35954

    Article  CAS  PubMed  Google Scholar 

  68. Dalvi PS, Nazarians-Armavil A, Purser MJ, Belsham DD. Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro. Endocrinology. 2012;153(5):2208–22. https://doi.org/10.1210/en.2011-1795

    Article  CAS  PubMed  Google Scholar 

  69. Wang L, Saint-Pierre DH, Taché Y. Peripheral ghrelin selectively increases Fos expression in neuropeptide Y–synthesizing neurons in mouse hypothalamic arcuate nucleus. Neurosci Lett. 2002;325(1):47–51. https://doi.org/10.1016/s0304-3940(02)00241-0

    Article  CAS  PubMed  Google Scholar 

  70. Williams G, Harrold JA, Cutler DJ. The hypothalamus and the regulation of energy homeostasis: lifting the lid on a black box. Proceedings of the Nutrition Society. 2000;59(3):385–96. https://doi.org/10.1017/s0029665100000434

  71. Yanagi S, Sato T, Kangawa K, Nakazato M. The homeostatic force of ghrelin. Cell Metabol. 2018;27(4):786–804. https://doi.org/10.1016/j.cmet.2018.02.008

    Article  CAS  Google Scholar 

  72. Gruzman A, Babai G, Sasson S. Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations. Rev Diabet Studies: RDS. 2009;6(1):13. https://doi.org/10.1900/RDS.2009.6.13

    Article  PubMed Central  Google Scholar 

  73. Wang B, Cheng KK-Y. Hypothalamic AMPK as a mediator of hormonal regulation of energy balance. Int J Mol Sci. 2018;19(11):3552. https://doi.org/10.3390/ijms19113552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lopez M, Nogueiras R, Tena-Sempere M, Dieguez C. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Reviews Endocrinol. 2016;12(7):421–32. https://doi.org/10.1038/nrendo.2016.67

    Article  CAS  Google Scholar 

  75. López M, Lage R, Saha AK, Pérez-Tilve D, Vázquez MJ, Varela L, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metabol. 2008;7(5):389–99. https://doi.org/10.1016/j.cmet.2008.03.006

    Article  CAS  Google Scholar 

  76. Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin’s actions: gut feelings and beyond. IBRO Neurosci Rep. 2022;12:228–39. https://doi.org/10.1016/j.ibneur.2022.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Perello M, Dickson S. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. J Neuroendocrinol. 2015;27(6):424–34. https://doi.org/10.1111/jne.12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Davis EA, Wald HS, Suarez AN, Zubcevic J, Liu CM, Cortella AM, et al. Ghrelin signaling affects feeding behavior, metabolism, and memory through the vagus nerve. Curr Biol. 2020;30(22):4510–8. https://doi.org/10.1016/j.cub.2020.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veedfald S, Plamboeck A, Hartmann B, Vilsbøll T, Knop F, Deacon C, et al. Ghrelin secretion in humans–a role for the vagus nerve? Neurogastroenterology Motil. 2018;30(6):e13295. https://doi.org/10.1111/nmo.13295

    Article  CAS  Google Scholar 

  80. Sovetkina A, Nadir R, Fung JNM, Nadjarpour A, Beddoe B. The physiological role of ghrelin in the regulation of energy and glucose homeostasis. Cureus. 2020;12(5). https://doi.org/10.7759/cureus.7941

  81. Nogueiras R. MECHANISMS IN ENDOCRINOLOGY: the gut–brain axis: regulating energy balance independent of food intake. Eur J Endocrinol. 2021;185(3):R75–91. https://doi.org/10.1530/EJE-21-0277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sato T, Ida T, Nakamura Y, Shiimura Y, Kangawa K, Kojima M. Physiological roles of ghrelin on obesity. Obes Res Clin Pract. 2014;8(5):e405–13. https://doi.org/10.1016/j.orcp.2013.10.002

    Article  PubMed  Google Scholar 

  83. Stengel A, Goebel M, Wang L, Taché Y. Ghrelin, Des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight. Peptides. 2010;31(2):357–69. https://doi.org/10.1016/j.peptides.2009.11.019

    Article  CAS  PubMed  Google Scholar 

  84. Schalla MA, Stengel A. Pharmacological modulation of ghrelin to induce weight loss: successes and challenges. Curr Diab Rep. 2019;19:1–11. https://doi.org/10.1007/s11892-019-1211-9

    Article  Google Scholar 

  85. Schüssler P, Kluge M, Yassouridis A, Dresler M, Uhr M, Steiger A. Ghrelin levels increase after pictures showing food. Obesity. 2012;20(6):1212–7. https://doi.org/10.1038/oby.2011.385

    Article  CAS  PubMed  Google Scholar 

  86. Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC. Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology. 2006;147(1):23–30. https://doi.org/10.1210/en.2005-0973

    Article  CAS  PubMed  Google Scholar 

  87. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, et al. Mice lacking ghrelin receptors resist the development of diet-induced obesity. J Clin Investig. 2005;115(12):3564–72. https://doi.org/10.1172/JCI26002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McFarlane MR, Brown MS, Goldstein JL, Zhao T-J. Induced ablation of ghrelin cells in adult mice does not decrease food intake, body weight, or response to high-fat diet. Cell Metabol. 2014;20(1):54–60. https://doi.org/10.1016/j.cmet.2014.04.007

    Article  CAS  Google Scholar 

  89. Briggs DI, Lockie SH, Wu Q, Lemus MB, Stark R, Andrews ZB. Calorie-restricted weight loss reverses high-fat diet-induced ghrelin resistance, which contributes to rebound weight gain in a ghrelin-dependent manner. Endocrinology. 2013;154(2):709–17. https://doi.org/10.1210/en.2012-1421

    Article  CAS  PubMed  Google Scholar 

  90. Uchida A, Zigman JM, Perelló M. Ghrelin and eating behavior: evidence and insights from genetically-modified mouse models. Front NeuroSci. 2013;7:121. https://doi.org/10.3389/fnins.2013.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Charbonneau VR. Validation of FHH-GhsrM1Mcwi GHSR KO rat as a model to study ghrelin biology. Carleton University; 2012. https://doi.org/10.22215/etd/2012-06893

  92. Delhanty P, van der Lely A-J. Ghrelin and glucose homeostasis. Peptides. 2011;32(11):2309–18. https://doi.org/10.1016/j.peptides.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  93. Heijboer A, Pijl H, Van den Hoek AM, Havekes L, Romijn J, Corssmit E. Gut–brain axis: regulation of glucose metabolism. J Neuroendocrinol. 2006;18(12):883–94. https://doi.org/10.1111/j.1365-2826.2006.01492.x

    Article  CAS  PubMed  Google Scholar 

  94. Nikolopoulos D, Theocharis S, Kouraklis G. Ghrelin’s role on gastrointestinal tract cancer. Surg Oncol. 2010;19(1):e2–10. https://doi.org/10.1016/j.suronc.2009.02.011

    Article  PubMed  Google Scholar 

  95. Airapetov MI, Eresko SO, Lebedev AA, Bychkov ER, Shabanov PD. Expression of the growth hormone secretagogue receptor 1a (GHS-R1a) in the brain. Physiological Rep. 2021;9(21):e15113. https://doi.org/10.14814/phy2.15113

    Article  CAS  Google Scholar 

  96. Landgren S, Engel JA, Hyytiä P, Zetterberg H, Blennow K, Jerlhag E. Expression of the gene encoding the ghrelin receptor in rats selected for differential alcohol preference. Behav Brain Res. 2011;221(1):182–8. https://doi.org/10.1016/j.bbr.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  97. Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metabolism. 2002;87(6):2988–91. https://doi.org/10.1210/jcem.87.6.8739

    Article  CAS  Google Scholar 

  98. Sakata I, Park W-M, Walker AK, Piper PK, Chuang J-C, Osborne-Lawrence S, et al. Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells. Am J Physiology-Endocrinology Metabolism. 2012;302(10):E1300–10. https://doi.org/10.1152/ajpendo.00041.2012

    Article  CAS  Google Scholar 

  99. Shankar K, Takemi S, Gupta D, Varshney S, Mani BK, Osborne-Lawrence S, et al. Ghrelin cell–expressed insulin receptors mediate meal-and obesity-induced declines in plasma ghrelin. JCI Insight. 2021;6(18). https://doi.org/10.1172/jci.insight.146983

  100. UK Hypoglycemia Study Group. Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia. 2007;50:1140–7. https://doi.org/10.1007/s00125-007-0599-y

    Article  CAS  Google Scholar 

  101. Shankar K, Gupta D, Mani BK, Findley BG, Lord CC, Osborne-Lawrence S, et al. Acyl-ghrelin is permissive for the normal counterregulatory response to insulin-induced hypoglycemia. Diabetes. 2020;69(2):228–37. https://doi.org/10.2337/db19-0438

    Article  CAS  PubMed  Google Scholar 

  102. Shankar K, Varshney S, Gupta D, Mani BK, Osborne-Lawrence S, Metzger NP, et al. Ghrelin does not impact the blunted counterregulatory response to recurrent hypoglycemia in mice. Front Endocrinol. 2023;14:1181856. https://doi.org/10.3389/fendo.2023.1181856

    Article  Google Scholar 

  103. Ukkola O. Ghrelin and metabolic disorders. Curr Protein Pept Sci. 2009;10(1):2–7. https://doi.org/10.2174/138920309787315220

    Article  CAS  PubMed  Google Scholar 

  104. Poher A-L, Tschöp MH, Müller TD. Ghrelin regulation of glucose metabolism. Peptides. 2018;100:236–42. https://doi.org/10.1016/j.peptides.2017.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kohno D, Gao H-Z, Muroya S, Kikuyama S, Yada T. Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2 + signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes. 2003;52(4):948–56. https://doi.org/10.2337/diabetes.52.4.948

    Article  CAS  PubMed  Google Scholar 

  106. Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol. 2022;915:174611. https://doi.org/10.1016/j.ejphar.2021.174611

    Article  CAS  PubMed  Google Scholar 

  107. Kalra S, Kalra P. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides. 2004;38(4):201–11. https://doi.org/10.1016/j.npep.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  108. Barb C, Hausman G, Lents C. Energy metabolism and leptin: effects on neuroendocrine regulation of reproduction in the gilt and sow. Reprod Domest Anim. 2008;43:324–30. https://doi.org/10.1111/j.1439-0531.2008.01173.x

    Article  PubMed  Google Scholar 

  109. Le N, Sayers S, Mata-Pacheco V, Wagner EJ. The PACAP paradox: dynamic and surprisingly pleiotropic actions in the central regulation of energy homeostasis. Front Endocrinol. 2022;13:877647. https://doi.org/10.3389/fendo.2022.877647

    Article  Google Scholar 

  110. Xu Y, Jiang Z, Li H, Cai J, Jiang Y, Otiz-Guzman J, et al. Lateral septum as a melanocortin downstream site in obesity development. Cell Rep. 2023;42(5). https://doi.org/10.1016/j.celrep.2023.112502

  111. Kalra SP, Bagnasco M, Otukonyong EE, Dube MG, Kalra PS. Rhythmic, reciprocal ghrelin and leptin signaling: new insight in the development of obesity. Regul Pept. 2003;111(1–3):1–11. https://doi.org/10.1016/s0167-0115(02)00305-1

    Article  CAS  PubMed  Google Scholar 

  112. Ahmadian-Moghadam H, Sadat-Shirazi M-S, Zarrindast M-R. Cocaine-and amphetamine-regulated transcript (CART): a multifaceted neuropeptide. Peptides. 2018;110:56–77. https://doi.org/10.1016/j.peptides.2018.10.008

    Article  CAS  PubMed  Google Scholar 

  113. Baltatzi M, Hatzitolios A, Tziomalos K, Iliadis F, Zamboulis C. Neuropeptide Y and alpha-melanocyte‐stimulating hormone: interaction in obesity and possible role in the development of hypertension. Int J Clin Pract. 2008;62(9):1432–40. https://doi.org/10.1111/j.1742-1241.2008.01823.x

    Article  CAS  PubMed  Google Scholar 

  114. Kalra SP, Ueno N, Kalra PS. Stimulation of appetite by ghrelin is regulated by leptin restraint: peripheral and central sites of action. J Nutr. 2005;135(5):1331–5. https://doi.org/10.1093/jn/135.5.1331

    Article  CAS  PubMed  Google Scholar 

  115. Sutton AK, Myers MG Jr, Olson DP. The role of PVH circuits in leptin action and energy balance. Annu Rev Physiol. 2016;78:207–21. https://doi.org/10.1146/annurev-physiol-021115-105347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang S, Zhang Q, Zhang L, Li C, Jiang H. Expression of ghrelin and leptin during the development of type 2 diabetes mellitus in a rat model. Mol Med Rep. 2013;7(1):223–8. https://doi.org/10.3892/mmr.2012.1154

    Article  CAS  PubMed  Google Scholar 

  117. Ukkola O, Pöykkö S, Päivänsalo M, Kesäniemi YA. Interactions between ghrelin, leptin and IGF-I affect metabolic syndrome and early atherosclerosis. Ann Med. 2008;40(6):465–73. https://doi.org/10.1080/07853890802084860

    Article  CAS  PubMed  Google Scholar 

  118. Serra-Prat M, Alfaro SR, Palomera E, Casamitjana R, Buquet X, Fernández‐Fernández C, et al. Relationship between ghrelin and the metabolic syndrome in the elderly: a longitudinal population‐based study. Clin Endocrinol. 2009;70(2):227–32. https://doi.org/10.1111/j.1365-2265.2008.03307.x

    Article  CAS  Google Scholar 

  119. Sharifi F, Yamini M, Esmaeilzadeh A, Mousavinasab N, Shajari Z. Acylated ghrelin and leptin concentrations in patients with type 2 diabetes mellitus, people with prediabetes and first degree relatives of patients with diabetes, a comparative study. J Diabetes Metabolic Disorders. 2013;12:1–6. https://doi.org/10.1186/2251-6581-12-51

    Article  CAS  Google Scholar 

  120. Mantzoros CS, Flier JS, Rogol AD. A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metabolism. 1997;82(4):1066–70. https://doi.org/10.1210/jcem.82.4.3878

    Article  CAS  Google Scholar 

  121. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897–901. https://doi.org/10.1038/29795

    Article  CAS  PubMed  Google Scholar 

  122. Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68(4):437–46.

    Article  CAS  PubMed  Google Scholar 

  123. Jequier E. Leptin signaling, adiposity, and energy balance. Ann N Y Acad Sci. 2002;967(1):379–88. https://doi.org/10.1111/j.1749-6632.2002.tb04293.x

    Article  CAS  PubMed  Google Scholar 

  124. Picó C, Palou M. Leptin and metabolic programming. MDPI; 2021. p. 114. https://doi.org/10.3390/nu14010114

  125. Mendoza-Herrera K, Florio AA, Moore M, Marrero A, Tamez M, Bhupathiraju SN, et al. The leptin system and diet: a mini review of the current evidence. Front Endocrinol. 2021;12:749050. https://doi.org/10.3389/fendo.2021.749050

    Article  Google Scholar 

  126. Cinti S, de Matteis R, Ceresi E, Pico C, Oliver J, Oliver P, et al. Leptin in the human stomach. Gut. 2001;49(1):155. https://doi.org/10.1136/gut.49.1.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Friedman J. The long road to leptin. J Clin Investig. 2016;126(12):4727–34. https://doi.org/10.1172/JCI91578

    Article  PubMed  PubMed Central  Google Scholar 

  128. Blüher S, Mantzoros CS. Leptin in humans: lessons from translational research. Am J Clin Nutr. 2009;89(3):S991–7. https://doi.org/10.3945/ajcn.2008.26788E

    Article  CAS  Google Scholar 

  129. Rayner DV, Trayhurn P. Regulation of leptin production: sympathetic nervous system interactions. J Mol Med. 2001;79:8–20. https://doi.org/10.1007/s001090100198

    Article  CAS  PubMed  Google Scholar 

  130. Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075–81. https://doi.org/10.1016/j.biochi.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  131. Chan JL, Mantzoros CS. Role of leptin in energy-deprivation states: normal human physiology and clinical implications for hypothalamic amenorrhoea and anorexia nervosa. Lancet. 2005;366(9479):74–85. https://doi.org/10.1016/S0140-6736(05)66830-4

    Article  CAS  PubMed  Google Scholar 

  132. Allaway HC, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Investig. 2016;25(2):91–119. https://doi.org/10.1515/hmbci-2015-0053

    Article  CAS  PubMed  Google Scholar 

  133. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13. https://doi.org/10.1038/35038090

    Article  PubMed  Google Scholar 

  134. Benelam B. Satiation, satiety and their effects on eating behaviour. Nutr Bull. 2009;34(2):126–73. https://doi.org/10.1111/j.1467-3010.2009.01753.x

    Article  Google Scholar 

  135. Brown SD, Duncan J, Crabtree D, Powell D, Hudson M, Allan JL. We are what we (think we) eat: the effect of expected satiety on subsequent calorie consumption. Appetite. 2020;152:104717. https://doi.org/10.1016/j.appet.2020.104717

    Article  CAS  PubMed  Google Scholar 

  136. Howick K, Griffin BT, Cryan JF, Schellekens H. From belly to brain: targeting the ghrelin receptor in appetite and food intake regulation. Int J Mol Sci. 2017;18(2):273. https://doi.org/10.3390/ijms18020273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Asakawa A, Inui A, Kaga O, Yuzuriha H, Nagata T, Ueno N, et al. Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin. Gastroenterology. 2001;120(2):337–45. https://doi.org/10.1053/gast.2001.22158

    Article  CAS  PubMed  Google Scholar 

  138. Lv Y, Liang T, Wang G, Li Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci Rep. 2018;38(5):BSR20181061. https://doi.org/10.1042/BSR20181061

    Article  PubMed  PubMed Central  Google Scholar 

  139. Zigman JM, Bouret SG, Andrews ZB. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol Metabolism. 2016;27(1):54–63. https://doi.org/10.1016/j.tem.2015.09.010

    Article  CAS  Google Scholar 

  140. Crujeiras A, Díaz-Lagares A, Abete I, Goyenechea E, Amil M, Martínez J, et al. Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J Endocrinol Investig. 2014;37:119–26. https://doi.org/10.1007/s40618-013-0004-2

    Article  CAS  Google Scholar 

  141. Labayen I, Ortega FB, Ruiz JR, Lasa A, Simon E, Margareto J. Role of baseline leptin and ghrelin levels on body weight and fat mass changes after an energy-restricted diet intervention in obese women: effects on energy metabolism. J Clin Endocrinol Metabolism. 2011;96(6):E996–1000. https://doi.org/10.1210/jc.2010-3006

    Article  CAS  Google Scholar 

  142. Adamska-Patruno E, Ostrowska L, Goscik J, Pietraszewska B, Kretowski A, Gorska M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: a randomized crossover study. Nutr J. 2018;17(1):1–7. https://doi.org/10.1186/s12937-018-0427-x

    Article  CAS  Google Scholar 

  143. Kalra SP, Kalra PS. Gene-transfer technology: a preventive neurotherapy to curb obesity, ameliorate metabolic syndrome and extend life expectancy. Trends Pharmacol Sci. 2005;26(10):488–95. https://doi.org/10.1016/j.tips.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  144. Wang Y, Asakawa A, Inui A, Kosai K-i. Leptin gene therapy in the fight against diabetes. Expert Opin Biol Ther. 2010;10(10):1405–14. https://doi.org/10.1517/14712598.2010.512286

    Article  CAS  PubMed  Google Scholar 

  145. Wang M-y, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR et al. Leptin therapy in insulin-deficient type I diabetes. Proceedings of the national academy of Sciences. 2010;107(11):4813-9. https://doi.org/10.1073/pnas.0909422107

  146. Denroche HC, Levi J, Wideman RD, Sequeira RM, Huynh FK, Covey SD, et al. Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes. 2011;60(5):1414–23. https://doi.org/10.2337/db10-0958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discovery. 2022;21(3):201–23. https://doi.org/10.1038/s41573-021-00337-8

    Article  CAS  PubMed  Google Scholar 

  148. Altabas V, Zjačić-Rotkvić V. Anti-ghrelin antibodies in appetite suppression: recent advances in obesity pharmacotherapy. ImmunoTargets Therapy. 2015:123–30. https://doi.org/10.2147/ITT.S60398

  149. Iyer MR, Wood CM, Kunos G. Recent progress in the discovery of ghrelin O-acyltransferase (GOAT) inhibitors. RSC Med Chem. 2020;11(10):1136–44. https://doi.org/10.1039/d0md00210k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mosa R, Huang L, Li H, Grist M, LeRoith D, Chen C. Long-term treatment with the ghrelin receptor antagonist [d-Lys3]-GHRP-6 does not improve glucose homeostasis in nonobese diabetic MKR mice. Am J Physiology-Regulatory Integr Comp Physiol. 2018;314(1):R71–83. https://doi.org/10.1152/ajpregu.00157.2017

    Article  CAS  Google Scholar 

  151. Walker A, Rivera P, Wang Q, Chuang J, Tran S, Osborne-Lawrence S, et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Mol Psychiatry. 2015;20(4):500–8. https://doi.org/10.1038/mp.2014.34

    Article  CAS  PubMed  Google Scholar 

  152. Buntwal L, Sassi M, Morgan AH, Andrews ZB, Davies JS. Ghrelin-mediated hippocampal neurogenesis: implications for health and disease. Trends Endocrinol Metabolism. 2019;30(11):844–59. https://doi.org/10.1016/j.tem.2019.07.001

    Article  CAS  Google Scholar 

  153. Hornsby AK, Redhead YT, Rees DJ, Ratcliff MS, Reichenbach A, Wells T, et al. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a ghsr-dependent manner. Psychoneuroendocrinology. 2016;63:198–207. https://doi.org/10.1016/j.psyneuen.2015.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rouach V, Bloch M, Rosenberg N, Gilad S, Limor R, Stern N, et al. The acute ghrelin response to a psychological stress challenge does not predict the post-stress urge to eat. Psychoneuroendocrinology. 2007;32(6):693–702. https://doi.org/10.1016/j.psyneuen.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  155. Raspopow K, Abizaid A, Matheson K, Anisman H. Anticipation of a psychosocial stressor differentially influences ghrelin, cortisol and food intake among emotional and non-emotional eaters. Appetite. 2014;74:35–43. https://doi.org/10.1016/j.appet.2013.11.018

    Article  PubMed  Google Scholar 

  156. Yousufzai MIA, Harmatz ES, Shah M, Malik MO, Goosens KA. Ghrelin is a persistent biomarker for chronic stress exposure in adolescent rats and humans. Translational Psychiatry. 2018;8(1):74. https://doi.org/10.1038/s41398-018-0135-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Stone LA, Harmatz ES, Goosens KA. Ghrelin as a stress hormone: implications for psychiatric illness. Biol Psychiatry. 2020;88(7):531–40. https://doi.org/10.1016/j.biopsych.2020.05.013

    Article  CAS  PubMed  Google Scholar 

  158. Kuliczkowska-Płaksej J, Jawiarczyk-Przybyłowska A, Zembska A, Kolačkov K, Syrycka J, Kałużny M, et al. Ghrelin and leptin concentrations in patients after SARS-CoV2 infection. J Clin Med. 2023;12(10):3551. https://doi.org/10.3390/jcm12103551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank JSS Academy of Higher Education & Research for providing support and facilities.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Vijayashankar.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayashankar, U., Ramashetty, R., Rajeshekara, M. et al. Leptin and ghrelin dynamics: unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus. J Diabetes Metab Disord 23, 427–440 (2024). https://doi.org/10.1007/s40200-024-01418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-024-01418-2

Keywords

Navigation