Skip to main content

Advertisement

Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy

  • Review
  • Published:
Tumor Biology

Abstract

Endothelial progenitor cells (EPCs) have recently been shown to promote the angiogenic switch in solid neoplasms, thereby promoting tumour growth and metastatisation. The genetic suppression of EPC mobilization from bone marrow prevents tumour development and colonization of remote organs. Therefore, it has been assumed that anti-angiogenic treatments, which target vascular endothelial growth factor (VEGF) signalling in both normal endothelial cells and EPCs, could interfere with EPC activation in cancer patients. Our recent data, however, show that VEGF fails to stimulate tumour endothelial colony-forming cells (ECFCs), i.e. the only EPC subtype truly belonging to the endothelial lineage. The present article will survey current evidence about EPC involvement in the angiogenic switch: we will focus on the controversy about EPC definition and on the debate around their actual incorporation into tumour neovessels. We will then discuss how ECFC insensitivity to VEGF stimulation in cancer patients could underpin their well-known resistance to anti-VEGF therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gao DC, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, et al. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta. 2009;1796(1):33–40. doi:10.1016/j.bbcan.2009.05.001.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Moccia F, Dragoni S, Poletto V, Rosti V, Tanzi F, Ganini C, et al. Orai1 and transient receptor potential channels as novel molecular targets to impair tumor neovascularisation in renal cell carcinoma and other malignancies. Anticancer Agents Med Chem. 2014;14(2):296–312.

    Article  CAS  PubMed  Google Scholar 

  3. Moccia F, Lodola F, Dragoni S, Bonetti E, Bottino C, Guerra G, et al. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation. Curr Vasc Pharmacol. 2014;12(1):87–105.

    Article  CAS  PubMed  Google Scholar 

  4. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21(12):1546–58. doi:10.1101/gad.436307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coghlin C, Murray GI. Current and emerging concepts in tumour metastasis. J Pathol. 2010;222(1):1–15. doi:10.1002/path.2727.

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307. doi:10.1038/nature10144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao DC, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science. 2008;319(5860):195–8. doi:10.1126/science.1150224.

    Article  CAS  PubMed  Google Scholar 

  8. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7. doi:10.1038/nature04186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol. 2011;21(2):139–46. doi:10.1016/j.semcancer.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  10. Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall. Stem Cells Int. 2015;2015:832649. doi:10.1155/2015/832649.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, et al. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta. 2014;1846(1):26–39. doi:10.1016/j.bbcan.2014.03.005.

    CAS  PubMed  Google Scholar 

  12. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, et al. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science. 2006;313(5794):1785–7. doi:10.1126/science.1127592.

    Article  CAS  PubMed  Google Scholar 

  13. Shaked Y, Henke E, Roodhart JM, Mancuso P, Langenberg MH, Colleoni M, et al. Rapid chemotherapy-induced acute endothelial progenitor cell mobilization: implications for antiangiogenic drugs as chemosensitizing agents. Cancer Cell. 2008;14(3):263–73. doi:10.1016/j.ccr.2008.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lodola F, Laforenza U, Bonetti E, Lim D, Dragoni S, Bottino C, et al. Store-operated Ca2+ entry is remodelled and controls in vitro angiogenesis in endothelial progenitor cells isolated from tumoral patients. PLoS One. 2012;7(9):e42541. doi:10.1371/journal.pone.0042541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dragoni S, Laforenza U, Bonetti E, Reforgiato M, Poletto V, Lodola F, et al. Enhanced expression of Stim, Orai, and TRPC transcripts and proteins in endothelial progenitor cells isolated from patients with primary myelofibrosis. PLoS One. 2014;9(3):e91099. doi:10.1371/journal.pone.0091099.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Plummer PN, Freeman R, Taft RJ, Vider J, Sax M, Umer BA, et al. MicroRNAs regulate tumor angiogenesis modulated by endothelial progenitor cells. Cancer Res. 2013;73(1):341–52. doi:10.1158/0008-5472.CAN-12-0271.

    Article  CAS  PubMed  Google Scholar 

  17. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. doi:10.1038/nm.2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertolini F, Marighetti P, Martin-Padura I, Mancuso P, Hu-Lowe DD, Shaked Y, et al. Anti-VEGF and beyond: shaping a new generation of anti-angiogenic therapies for cancer. Drug Discov Today. 2011;16(23-24):1052–60. doi:10.1016/j.drudis.2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  19. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc2442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moccia F, Poletto V. May the remodelling of the Ca(2+) toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? Biochim Biophys Acta. 2014. doi:10.1016/j.bbamcr.2014.10.024.

    PubMed  Google Scholar 

  21. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  22. Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia. 2007;21(6):1141–9. doi:10.1038/sj.leu.2404676.

    Article  CAS  PubMed  Google Scholar 

  23. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, et al. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol. 2007;35(7):1109–18. doi:10.1016/j.exphem.2007.04.002.

    Article  CAS  PubMed  Google Scholar 

  24. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2(7):a006692.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593–600. doi:10.1056/NEJMoa022287.

    Article  PubMed  Google Scholar 

  26. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164–9.

    Article  PubMed  Google Scholar 

  27. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109(5):1801–9. doi:10.1182/blood-2006-08-043471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28(9):1584–95. doi:10.1161/ATVBAHA.107.155960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97(7):3422–7. doi:10.1073/pnas.070046397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001;108(3):391–7. doi:10.1172/JCI13152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest. 2000;105(1):71–7. doi:10.1172/JCI8071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.

    Article  CAS  PubMed  Google Scholar 

  34. Moccia F, Bonetti E, Dragoni S, Fontana J, Lodola F, Romani RB, et al. Hematopoietic progenitor and stem cells circulate by surfing on intracellular Ca2+ waves: a novel target for cell-based therapy and anti-cancer treatment? Curr Signal Transduction Ther. 2012;7(2):161–76.

    Article  CAS  Google Scholar 

  35. de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res. 2013;19(13):3360–8. doi:10.1158/1078-0432.CCR-13-0462.

    Article  PubMed  Google Scholar 

  36. Tzeng HE, Chen PC, Lin KW, Lin CY, Tsai CH, Han SM, et al. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis. Clin Sci (Lond). 2015;129(2):147–58. doi:10.1042/CS20140390.

    Article  CAS  Google Scholar 

  37. Patenaude A, Parker J, Karsan A. Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res. 2010;79(3):217–23. doi:10.1016/j.mvr.2010.01.007.

    Article  CAS  PubMed  Google Scholar 

  38. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7(11):1194–201. doi:10.1038/nm1101-1194.

    Article  CAS  PubMed  Google Scholar 

  39. Nair R, Teo WS, Mittal V, Swarbrick A. ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther. 2014;22(8):1407–15. doi:10.1038/mt.2014.83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mellick AS, Plummer PN, Nolan DJ, Gao D, Bambino K, Hahn M, et al. Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumor angiogenesis and growth. Cancer Res. 2010;70(18):7273–82. doi:10.1158/0008-5472.CAN-10-1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med. 2005;11(3):261–2. doi:10.1038/nm1200.

    Article  CAS  PubMed  Google Scholar 

  42. Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999;18(14):3964–72. doi:10.1093/emboj/18.14.3964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jung SY, Choi JH, Kwon SM, Masuda H, Asahara T, Lee YM. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function. J Cell Biochem. 2012;113(5):1478–87. doi:10.1002/jcb.24085.

    CAS  PubMed  Google Scholar 

  44. Zhu H, Shao Q, Sun X, Deng Z, Yuan X, Yu D, et al. The mobilization, recruitment and contribution of bone marrow-derived endothelial progenitor cells to the tumor neovascularization occur at an early stage and throughout the entire process of hepatocellular carcinoma growth. Oncol Rep. 2012;28(4):1217–24. doi:10.3892/or.2012.1944.

    CAS  PubMed  Google Scholar 

  45. Ahn JB, Rha SY, Shin SJ, Jeung HC, Kim TS, Zhang X, et al. Circulating endothelial progenitor cells (EPC) for tumor vasculogenesis in gastric cancer patients. Cancer Lett. 2010;288(1):124–32. doi:10.1016/j.canlet.2009.06.031.

    Article  CAS  PubMed  Google Scholar 

  46. Yu P, Ge YZ, Zhao Y, Wu JP, Wu R, Zhou LH, et al. Identification and significance of mobilized endothelial progenitor cells in tumor neovascularization of renal cell carcinoma. Tumour Biol. 2014;35(9):9331–41. doi:10.1007/s13277-014-2205-5.

    Article  CAS  PubMed  Google Scholar 

  47. Wei J, Jarmy G, Genuneit J, Debatin KM, Beltinger C. Human blood late outgrowth endothelial cells for gene therapy of cancer: determinants of efficacy. Gene Ther. 2007;14(4):344–56. doi:10.1038/sj.gt.3302860.

    Article  CAS  PubMed  Google Scholar 

  48. Bieback K, Vinci M, Elvers-Hornung S, Bartol A, Gloe T, Czabanka M, et al. Recruitment of human cord blood-derived endothelial colony-forming cells to sites of tumor angiogenesis. Cytotherapy. 2013;15(6):726–39. doi:10.1016/j.jcyt.2013.01.215.

    Article  CAS  PubMed  Google Scholar 

  49. Moccia F, Tanzi F, Munaron L. Endothelial remodelling and intracellular calcium machinery. Curr Mol Med. 2014;14(4):457–80.

    Article  CAS  PubMed  Google Scholar 

  50. Yoder MC, Ingram DA. The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta. 2009;1796(1):50–4. doi:10.1016/j.bbcan.2009.04.002.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. De Palma M, Venneri MA, Roca C, Naldini L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med. 2003;9(6):789–95. doi:10.1038/nm871.

    Article  PubMed  Google Scholar 

  52. Göthert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, et al. Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood. 2004;104(6):1769–77. doi:10.1182/blood-2003-11-3952.

    Article  PubMed  Google Scholar 

  53. Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR. Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer. 2009;125(8):1771–7. doi:10.1002/ijc.24605.

    Article  CAS  PubMed  Google Scholar 

  54. Machein MR, Renninger S, de Lima-Hahn E, Plate KH. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol. 2003;13(4):582–97.

    Article  CAS  PubMed  Google Scholar 

  55. Purhonen S, Palm J, Rossi D, Kaskenpää N, Rajantie I, Ylä-Herttuala S, et al. Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A. 2008;105(18):6620–5. doi:10.1073/pnas.0710516105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood. 2004;104(7):2084–6. doi:10.1182/blood-2004-01-0336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duda DG, Cohen KS, Kozin SV, Perentes JY, Fukumura D, Scadden DT, et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood. 2006;107(7):2774–6. doi:10.1182/blood-2005-08-3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spring H, Schüler T, Arnold B, Hämmerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A. 2005;102(50):18111–6. doi:10.1073/pnas.0507158102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, et al. Effect of angiogenesis inhibition by Id loss and the contribution of bone-marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell. 2003;4(4):277–89.

    Article  CAS  PubMed  Google Scholar 

  60. Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 2014;229(1):10–6. doi:10.1002/jcp.24423.

    CAS  PubMed  Google Scholar 

  61. Li H, Gerald WL, Benezra R. Utilization of bone marrow-derived endothelial cell precursors in spontaneous prostate tumors varies with tumor grade. Cancer Res. 2004;64(17):6137–43. doi:10.1158/0008-5472.CAN-04-1287.

    Article  CAS  PubMed  Google Scholar 

  62. Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R, et al. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells. 2011;29(11):1898–907. doi:10.1002/stem.734.

    Article  CAS  PubMed  Google Scholar 

  63. Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Guerra G, et al. Canonical transient receptor potential 3 channel triggers vascular endothelial growth factor-induced intracellular Ca2+ oscillations in endothelial progenitor cells isolated from umbilical cord blood. Stem Cells Dev. 2013;22(19):2561–80. doi:10.1089/scd.2013.0032.

    Article  CAS  PubMed  Google Scholar 

  64. Song Y, Li X, Wang D, Fu C, Zhu Z, Zou MH, et al. Transcription factor Krüppel-like factor 2 plays a vital role in endothelial colony forming cells differentiation. Cardiovasc Res. 2013;99(3):514–24. doi:10.1093/cvr/cvt113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu D, Chen W, Ren J, Zhang T, Yang K, Wu G, et al. VEGF-PKD1-HDAC7 signaling promotes endothelial progenitor cell migration and tube formation. Microvasc Res. 2014;91:66–72. doi:10.1016/j.mvr.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  66. Ben-Shoshan J, George J. Endothelial progenitor cells as therapeutic vectors in cardiovascular disorders: from experimental models to human trials. Pharmacol Ther. 2007;115(1):25–36. doi:10.1016/j.pharmthera.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  67. Roncalli JG, Tongers J, Renault MA, Losordo DW. Endothelial progenitor cells in regenerative medicine and cancer: a decade of research. Trends Biotechnol. 2008;26(5):276–83. doi:10.1016/j.tibtech.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  68. Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008;78(3):413–21. doi:10.1093/cvr/cvn081.

    Article  CAS  PubMed  Google Scholar 

  69. Koch S, Claesson-Welsh L. Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2012;2(7):a006502. doi:10.1101/cshperspect.a006502.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Potenza DM, Guerra G, Avanzato D, Poletto V, Pareek S, Guido D, et al. Hydrogen sulphide triggers VEGF-induced intracellular Ca(2+) signals in human endothelial cells but not in their immature progenitors. Cell Calcium. 2014. doi:10.1016/j.ceca.2014.07.010.

    PubMed  Google Scholar 

  71. Beaudry P, Force J, Naumov GN, Wang A, Baker CH, Ryan A, et al. Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res. 2005;11(9):3514–22. doi:10.1158/1078-0432.CCR-04-2271.

    Article  CAS  PubMed  Google Scholar 

  72. Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E, et al. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov. 2012;2(5):434–49. doi:10.1158/2159-8290.CD-11-0171.

    Article  CAS  PubMed  Google Scholar 

  73. Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58. doi:10.1016/j.cell.2007.11.028.

    Article  CAS  PubMed  Google Scholar 

  74. Parekh AB. Decoding cytosolic Ca2+ oscillations. Trends Biochem Sci. 2011;36(2):78–87. doi:10.1016/j.tibs.2010.07.013.

    Article  CAS  PubMed  Google Scholar 

  75. Moccia F, Berra-Romani R, Tanzi F. Update on vascular endothelial Ca2+ signalling: a tale of ion channels, pumps and transporters. World J Biol Chem. 2012;3(7):127–58. doi:10.4331/wjbc.v3.i7.127.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Moccia F, Berra-Romani R, Tanzi F. Ca2+ signalling in damaged endothelium and arterial remodelling: Do connexin hemichannels provide a suitable target to prevent in-stent restenosis? Curr Drug Ther. 2012;7(4):268–80. doi:10.2174/157488512804999109.

    Article  CAS  Google Scholar 

  77. Munaron L, Pla AF. Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology. Curr Med Chem. 2009;16(35):4691–703.

    Article  CAS  PubMed  Google Scholar 

  78. Fiorio Pla A, Gkika D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front Physiol. 2013;4:311. doi:10.3389/fphys.2013.00311.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta. 2014. doi:10.1016/j.bbamcr.2014.03.007.

    PubMed Central  Google Scholar 

  80. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29. doi:10.1038/nrm1155.

    Article  CAS  PubMed  Google Scholar 

  81. Moccia F, Berra-Romani R, Tritto S, Signorelli S, Taglietti V, Tanzi F. Epidermal growth factor induces intracellular Ca2+ oscillations in microvascular endothelial cells. J Cell Physiol. 2003;194:139–50. doi:10.1002/jcp.10198.

    Article  CAS  PubMed  Google Scholar 

  82. Berra-Romani R, Raqeeb A, Torres-Jácome J, Guzman-Silva A, Guerra G, Tanzi F, et al. The mechanism of injury-induced intracellular calcium concentration oscillations in the endothelium of excised rat aorta. J Vasc Res. 2012;49(1):65–76. doi:10.1159/000329618.

    Article  PubMed  Google Scholar 

  83. Zhu LP, Luo YG, Chen TX, Chen FR, Wang T, Hu Q. Ca2+ oscillation frequency regulates agonist-stimulated gene expression in vascular endothelial cells. J Cell Sci. 2008;121(15):2511–8. doi:10.1242/jcs.031997.

    Article  CAS  PubMed  Google Scholar 

  84. Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V, et al. How to utilize Ca2+ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg. 2013;13 Suppl 2:S46. doi:10.1186/1471-2482-13-S2-S46.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Moccia F, Dragoni S, Lodola F, Bonetti E, Bottino C, Guerra G, et al. Store-dependent Ca(2+) entry in endothelial progenitor cells as a perspective tool to enhance cell-based therapy and adverse tumour vascularization. Curr Med Chem. 2012;19(34):5802–18.

    Article  CAS  PubMed  Google Scholar 

  86. Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, et al. Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res. 2011;108(10):1190–8. doi:10.1161/circresaha.111.243352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res. 2008;103(11):1289–99. doi:10.1161/01.res.0000338496.95579.56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dragoni S, Guerra G, Fiorio Pla A, Bertoni G, Rappa A, Poletto V, et al. A functional transient receptor potential vanilloid 4 (TRPV4) channel is expressed in human endothelial progenitor cells. J Cell Physiol. 2015;230(1):95–104. doi:10.1002/jcp.24686.

    Article  CAS  PubMed  Google Scholar 

  89. Escudier B, Szczylik C, Porta C, Gore M. Treatment selection in metastatic renal cell carcinoma: expert consensus. Nat Rev Clin Oncol. 2012;9(6):327–37. doi:10.1038/nrclinonc.2012.59.

    Article  CAS  PubMed  Google Scholar 

  90. Porta C, Paglino C, Imarisio I, Canipari C, Chen K, Neary M et al. Safety and treatment patterns of multikinase inhibitors in patients with metastatic renal cell carcinoma at a tertiary oncology center in Italy. BMC Cancer. 2011;11. doi::10.1186/1471-2407-11-105.

  91. Bussolati B, Deambrosis I, Russo S, Deregibus MC, Camussi G. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J. 2003;17(9):1159–61. doi:10.1096/fj.02-0557fje.

    CAS  PubMed  Google Scholar 

  92. Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer. 2010;1(1):12–25. doi:10.1177/1947601909356574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer. 2008;8(8):579–91. doi:10.1038/nrc2403.

    Article  CAS  PubMed  Google Scholar 

  94. Porta C, Paglino C, Imarisio I, Ganini C, Sacchi L, Quaglini S, et al. Changes in circulating pro-angiogenic cytokines, other than VEGF, before progression to sunitinib therapy in advanced renal cell carcinoma patients. Oncology. 2013;84(2):115–22. doi:10.1159/000342099.

    Article  CAS  PubMed  Google Scholar 

  95. Barcellos-Hoff MH, Lyden D, Wang TC. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013;13(7):511–8. doi:10.1038/nrc3536.

    Article  CAS  PubMed  Google Scholar 

  96. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C, Deregibus MC, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71(15):5346–56. doi:10.1158/0008-5472.CAN-11-0241.

    Article  CAS  PubMed  Google Scholar 

  97. Suriano R, Chaudhuri D, Johnson RS, Lambers E, Ashok BT, Kishore R, et al. 17Beta-estradiol mobilizes bone marrow-derived endothelial progenitor cells to tumors. Cancer Res. 2008;68(15):6038–42. doi:10.1158/0008-5472.CAN-08-1009.

    Article  CAS  PubMed  Google Scholar 

  98. Myers C, Charboneau A, Cheung I, Hanks D, Boudreau N. Sustained expression of homeobox D10 inhibits angiogenesis. Am J Pathol. 2002;161(6):2099–109. doi:10.1016/S0002-9440(10)64488-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17(3):471–94. doi:10.1007/s10456-014-9420-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–9.

Download references

Acknowledgments

This work was supported by a grant from the Cariplo Foundation [2010-0807] and by a grant from the Associazione Italiana per la Ricerca sul Cancro (AIRC; Milan, Italy), Special Program Molecular Clinical Oncology 5x1000 to AIRC-Gruppo Italiano Malattie Mieloproliferative (AGIMM) project #1005, both awarded to VR.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Moccia.

Additional information

Mariapia Cinelli passed away during the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moccia, F., Zuccolo, E., Poletto, V. et al. Endothelial progenitor cells support tumour growth and metastatisation: implications for the resistance to anti-angiogenic therapy. Tumor Biol. 36, 6603–6614 (2015). https://doi.org/10.1007/s13277-015-3823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3823-2

Keywords