Skip to main content

Advanced glycation End-products (AGEs): an emerging concern for processed food industries

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The global food industry is expected to increase more than US $ 7 trillion by 2014. This rise in processed food sector shows that more and more people are diverging towards modern processed foods. As modern diets are largely heat processed, they are more prone to contain high levels of advanced glycation end products (AGEs). AGEs are a group of complex and heterogeneous compounds which are known as brown and fluorescent cross-linking substances such as pentosidine, non-fluorescent cross-linking products such as methylglyoxal-lysine dimers (MOLD), or non-fluorescent, non-cross linking adducts such as carboxymethyllysine (CML) and pyrraline (a pyrrole aldehyde). The chemistry of the AGEs formation, absorption and bioavailability and their patho-biochemistry particularly in relation to different complications like diabetes and ageing discussed. The concept of AGEs receptor – RAGE is mentioned. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Different methods of detection and quantification along with types of agents used for the treatment of AGEs are reviewed. Generally, ELISA or LC-MS methods are used for analysis of foods and body fluids, however lack of universally established method highlighted. The inhibitory effect of bioactive components on AGEs by trapping variety of chemical moieties discussed. The emerging evidence about the adverse effects of AGEs makes it necessary to investigate the different therapies to inhibit AGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed N, Argirov OK, Minhas HS, Cordeiro CAA, Thornalley PJ (2002) Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to N-epsilon-carboxymethyl-lysine- and N-epsilon-(1-carboxyethyl) lysine-modified albumin. Biochem J 364:1–14

    Article  CAS  Google Scholar 

  • Ahmed N, Luthen R, Haussinger D, Sebekova K, Schinzel R, Voelker W et al (2005a) Increased protein glycation in cirrhosis and therapeutic strategies to prevent it. Ann N Y Acad Sci 1043:718–724

    Article  CAS  Google Scholar 

  • Ahmed N, Mirshekar-Syahkal B, Kennish L, Karachalias N, Babaei-Jadidi R, Thornalley PJ (2005b) Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection. Mol Nutr Food Res 49:691–699

    Article  CAS  Google Scholar 

  • Ames JM (2008) Determination of Ne-(carboxymethyl) lysine in foods and related systems. Ann N Y Acad Sci 1126:20–24

    Article  CAS  Google Scholar 

  • Ardestani A, Yazdanparast R (2007) Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. Int J Biol Macromol 41:572–578

    Article  CAS  Google Scholar 

  • Assar SH, Moloney C, Lima M, Magee R, Ames JM (2009) Determination of Ne-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino Acids 36:317–326

    Article  CAS  Google Scholar 

  • Babu PVA, Sabitha KE, Shyamaladevi CS (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact 162(2):114–120

    Article  CAS  Google Scholar 

  • Babu PVA, Sabitha KE, Shyamaladevi CS (2008) Effect of green tea extract on advanced glycation and cross-linking of tail tendon collagen in streptozotocin induced diabetic rats. Food Chem Toxicol 46:280–285

    Article  CAS  Google Scholar 

  • Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  Google Scholar 

  • Bergmann R, Helling R, Heichert C, Scheunemann M, Mading P, Wittrisch H, Johannsen B, Henle T (2001) Radio fluorination and positron emission tomography (PET) as a new approach to study the in vivo distribution and elimination of the advanced glycation endproducts N epsilon-carboxymethyllysine (CML) and N epsilon-carboxyethyllysine (CEL). Nahrung 45:182–188

    Article  CAS  Google Scholar 

  • Bierhaus A, Chevion S, Chevion M et al (1997) Advanced glycation end-products induced activation of NF-xB is suppressed by α-lipoic acid in cultured endothelial cells. Diabetes 46:1481–1490

    Article  CAS  Google Scholar 

  • Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998a) AGE and their interaction with AGE-receptors in vascular disease and diabetes. I. The AGE concept. Cardiovasc Res 37:586–600

    Article  CAS  Google Scholar 

  • Bierhaus A, Ziegler R, Nawroth PP (1998b) Molecular mechanisms of diabetic angiopathy clues for innovative therapeutic interventions. Horm Res 50(Suppl 1):1–5

    Article  CAS  Google Scholar 

  • Birlouez-Aragon I, Pischetsrieder M, Leclère J et al (2004) Assessment of protein glycation markers in infant formulas. Food Chem 87:253–259

    Article  CAS  Google Scholar 

  • Birlouez-Aragon I, Saavedra G, Tessier FJ, Galinier A, Ait-Ameur L, Lacoste F, Niamba CN, Alt N, Somoza V, Lecerf JM (2010) A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr 91:1220–1226

    Article  CAS  Google Scholar 

  • Booth AA, Khalifah RG, Todd P, Hudson BG (1997) In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs) Novel inhibition of post-Amadori glycation pathways. J Biol Chem 272:5430–5437

    Article  CAS  Google Scholar 

  • Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234

    Article  CAS  Google Scholar 

  • Brownlee M, Vlassara H, Cerami A (1984) Nonenzymaic glycosylation and the pathogenesis of diabetic complications. Annu Int Med 101:527–537

    Article  CAS  Google Scholar 

  • Bucala R, Cerami A (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv Pharmacol  23:1–34

  • Caballero F, Gerez E, Batlle A, Vazquez E (2000) Preventive aspirin treatment of streptozotocin induced diabetes: blockage of oxidative status and revertion of heme enzymes inhibition. Chem Biol Interact 126:215–225

    Article  CAS  Google Scholar 

  • Cai W, Cao QD, Zhu L et al (2002) Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med 8:337–346

    CAS  Google Scholar 

  • Cai W, He JC, Zhu L, Chen X, Wallenstein S, Striker GE, Vlassara H (2007) Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol 170:1893–1902

    Article  CAS  Google Scholar 

  • Cai W, He JC, Zhu L, Chen X, Striker GE, Vlassara H (2008) AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation. Am J Physiol Cell Physiol 294:145–152

    Article  CAS  Google Scholar 

  • Cerami C, Founds H, Nicholl I et al (1997) Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 94:13915–13920

    Article  CAS  Google Scholar 

  • Chao PC, Hsu CC, Yin MC (2009) Analysis of glycative products in sauces and sauce-treated foods. Food Chem 113:262–266

    Article  CAS  Google Scholar 

  • Charissou A, Ait-Ameur L, Birlouez-Aragon I (2007) Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. J Chromatogr A 1140:189–194

    Article  CAS  Google Scholar 

  • Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354

    CAS  Google Scholar 

  • Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy BI (1998) Aminoguanidine prevents age-related arterial stiffening andcardiac hypertrophy. Proc Natl Acad Sci U S A 95:1301–1306

    Article  CAS  Google Scholar 

  • Delgado-Andrade C, Rufián-Henares JA, Morales FJ (2006) Study on fluorescence of maillard reaction compounds in breakfast cereals. Mol Nutr Food Res 50:799–804

    Article  CAS  Google Scholar 

  • Delgado-Andrade C, Seiquer I, Garcia MM, Galdo G, Navarro MP (2011) Increased maillard reaction products intake reduces phosphorus digestibility in male adolescents. Nutr 27:86–91

    Article  CAS  Google Scholar 

  • Delgado-Andrade C, Tessier FJ, Niquet-Leridon C, Seiquer I, Pilar NM (2012) Study of the urinary and faecal excretion of nepsilon-carboxymethyllysine in young human volunteers. Amino Acids 43:595–602

    Article  CAS  Google Scholar 

  • Depeint F, Shangari N, Furrer R, Bruce WR, O’Brien PJ (2007) Marginal thiamine deficiency increases oxidative markers in the plasma and selected tissues in F344 rats. Nutr Res 27:698–704

    Article  CAS  Google Scholar 

  • Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. J Agric Food Chem 55:4209–4216

    Article  CAS  Google Scholar 

  • Drusch S, Faist V, Erbersdobler HF ( 1999) Determination of N-epsiloncarboxymethyllysine in milk products by a modified reversed-phase HPLC method. Food Chem 65:547–553

  • Eble AS, Thorpe SR, Baynes JW (1983) Nonenzymatic glycosylation and glucose-dependent cross-linking of proteins. J Biol Chem 258:9406–9412

    CAS  Google Scholar 

  • Feng JX, Hou FF, Liang M, Wang GB, Zhang X, Li HY, Xie D, Tian JW, Liu ZQ (2007) Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney Int 71:901–911

    Article  CAS  Google Scholar 

  • Finot PA, Magnenat E (1981) Metabolic transit of early and advanced maillard products. Prog Food Nutr Sci 5:193–207

    CAS  Google Scholar 

  • Foerster A, Kuhne Y, Henle T (2005) Studies on absorption and elimination of dietary maillard reaction products. Ann N Y Acad Sci 1043:474–481

  • Forbes JM, Yee LT, Thallas V, Lassila M, Candido R et al (2004) Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes 53:1813–1823

    Article  CAS  Google Scholar 

  • Friedman M (1992) Dietary impact of food processing. Annu Rev Nutr 12:119–137

    Article  CAS  Google Scholar 

  • Frye EB, Degenhardt TP, Thorpe SR, Baynes JW (1998) Role of the maillard reaction in aging of tissue proteins advanced glycation end product-dependent increase in imidazolium cross-links inhuman lens proteins. J Biol Chem 273:18714–18719

    Article  CAS  Google Scholar 

  • Garcia MM, Seiquer I, Delgado-Andrade C, Galdo G, Navarro MP (2009) Intake of Maillard reaction products reduces iron bioavailability in male adolescents. Mol Nutr Food Res 53:1551–1560

    Article  CAS  Google Scholar 

  • Gokmen V, Senyuva HZ (2012) Effects of some cations on the formation of acrylamide and furfurals in glucose-asparagine model system. Eur Food Res Technol 225:815–820

    Article  CAS  Google Scholar 

  • Goldberg T, Cai W, Peppa M, Dardaine V, Baliga BS, Uribarri J, Vlassara H (2004) Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc 104:1287–1291

    Article  CAS  Google Scholar 

  • Gugliucci A, Menini T (2002) The botanical extracts of achyrocline satureoides and ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III. Life Sci 72:279–292

    Article  CAS  Google Scholar 

  • Gugliucci A, Markowicz Bastos DH, Schulze J, Ferreira Souza MF (2009) Caffeic and cholorogenic acids in ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80:339–344

    Article  CAS  Google Scholar 

  • Haitoglou CS, Tsilibary EC, Brownlee M, Charonis AS (1992) Altered cellular interactions between endothelial cells and nonenzymatically glucosylated laminin/type IV collagen. J Biol Chem 267:12404–12407

    CAS  Google Scholar 

  • Han SH, Kim YH, Mook-Jung I (2011) RAGE: the beneficial and deleterious effects by diverse mechanisms of actions. Mol Cells 31:91–97

    Article  CAS  Google Scholar 

  • Harcourt BE, Sourris KC, Coughlan MT, Walker KZ, Dougherty SL, Andrikopoulos S, Morley AL, Thallas-Bonke V et al (2011) Targeted reduction of advanced glycation improves renal function in obesity. Kidney Int 80:190–198

    Article  CAS  Google Scholar 

  • Hartkopf J, Pahlke C, Lüdemann G, Erbersdobler HF (1994) Determination of Ne-carboxymethyllysine by a reserved-phase high-performance liquid chromatography method. J Chromatogr 672:242–246

    Article  CAS  Google Scholar 

  • Hartog JWL, Voors AA, Bakker SJL, Smit AJ, Veldhuisen DJ (2007) Advanced glycation end-products and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146–55

    Article  CAS  Google Scholar 

  • He C, Sabol J, Mitsuhashi T, Vlassara H (1999) Dietary glycotoxins: inhibition of reactive products by aminoguanidine facilitates renal clearance and reduces tissue sequestration. Diabetes 48:1308–1315

    Article  CAS  Google Scholar 

  • Henle T (2008) Maillard reaction of proteins and advanced glycation end products (AGEs) in food. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants. Wiley, New Jersey, pp 215–242

    Chapter  Google Scholar 

  • Ho SC, Wu SP, Lin SM, Tang YL (2010) Comparison of anti-glycation capacities of several herbal infusions with that of green tea. Food Chem 122:768–774

    Article  CAS  Google Scholar 

  • Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H (2002) Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 51:2082–2089

    Article  CAS  Google Scholar 

  • Howard EW, Benton R, Ahern-Moore J, Tomasek JJ (1996) Cellular contraction of collagen lattices is inhibited by nonenzymatic glycation. Exp Cell Res 228:132–137

    Article  CAS  Google Scholar 

  • Hsieh CL, Lin YC, Ko WS, Peng CH, Huang CN, Peng RY (2005) Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. J Ethn 102:357–363

    Article  Google Scholar 

  • Ikeda K, Higashi T, Sano H, Jinnouchi Y, Yoshida M, Araki T et al (1996) N (epsilon) -(carboxymethyl) lysine protein adduct is a major immunological epitope in proteins modified with advanced glycation end products of the maillard reaction. Biochem 35:8075–8083

    Article  CAS  Google Scholar 

  • Jakus V, Hrnciarova M, Carsky J, Krahulec B, Rietbrock N (1999) Inhibition of nonenzymatic protein glycation and lipid peroxidation by drugs with antioxidant activity. Life Sci 65:1991–1993

    Article  CAS  Google Scholar 

  • Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5- Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38:801–809

    Article  CAS  Google Scholar 

  • John WG, Lamb EJ (1993) The maillard or browning reaction in diabetes. Eye 7:230–237

    Article  Google Scholar 

  • Keita Y, Michailova M, Kratzer W, Worner G, Worner W, Rietbrock N (1992) Influence of penicillamine on the formation of early non-enzymatic glycation products of human serum proteins. Int J Clin Pharmacol Ther Toxicol 30:441–442

    CAS  Google Scholar 

  • Khalifah RG, Baynes JW, Hudson BG (1999) Amadorins: novel post-amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 257:251–258

    Article  CAS  Google Scholar 

  • Klopotek Y, Otto K, Bohm V (2005) Processing strawberries to different products alters contents of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity. J Agric Food Chem 53:5640–5646

    Article  CAS  Google Scholar 

  • Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94(12):6474–6479

    Article  CAS  Google Scholar 

  • Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N, Okawa T, Kojiro M, Nagata K (2005) Advanced glycation End-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage and bone. J Bone Mineral Res 20(9):1647–1658

    Article  CAS  Google Scholar 

  • Lander HM, Taurus JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation for the receptor for AGE triggers a p21 rats dependent mitogen activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    Article  CAS  Google Scholar 

  • Ledl F, Schleicher E (1990) New aspects of the maillard reaction in foods and in the human body. Angew Chem Int Ed 29:565–594

    Article  Google Scholar 

  • Lee GY, Jang DS, Lee YM, Kim JM, Kim JS (2006) Naphthopyrone glucosides from the seeds of cassia tora with inhibitory activity on advanced glycation end products (AGEs) formation. Arch Pharm Res 29:587–590

    Article  CAS  Google Scholar 

  • Liang CP, Wang M, Simon JE, Ho CT (2004) Antioxidant activity of plant extracts on the inhibition of citral off-odor formation. Mol Nutr Food Res 48:308–317

    Article  CAS  Google Scholar 

  • Lin RY, Choudhury RP, Cai W, Lu M, Fallon JT, Fisher EA, Vlassara H (2003) Dietary glycotoxins promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 168:213–220

    Article  CAS  Google Scholar 

  • Lo CY, Li S, Tan D, Pan MH, Sang S, Ho CT (2006) Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Mol Nutr Food Res 50(12):1118–1128

    Article  CAS  Google Scholar 

  • Makita Z, Vlassara H, Cerami A, Bucala R (1992) Immunochemical detection of advanced glycosylation end products in vivo. J Biol Chem 267:5133–5138

    CAS  Google Scholar 

  • Makita Z, Yunagisawa K, Kawajima S, Bucala R, Vlassara H, Koike T (1996) The role of advanced glycation end products in the pathogenesis of atherosclerosis. Nephrol Dial Transplant 11(Suppl 5):31–33

    Article  CAS  Google Scholar 

  • Malik NS, Meek KM (1994) The inhibition of sugar-induced structural alterations in collagen by aspirin and other compounds. Biochem Biophys Res Commun 99:683–686

    Article  Google Scholar 

  • Meerwaldt R, Links T, Graaff R, Thorpe SR, Baynes JW, Hartog J, Gans R, Smit A (2005) Simple noninvasive measurement of skin autofluorescence. Ann N Y Acad Sci 1043:290–298

    Article  CAS  Google Scholar 

  • Metz TO, Alderson NL, Thorpe SR, Baynes JW (2003) Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys 419:41–49

    Article  CAS  Google Scholar 

  • Miyata T, Ueda Y, Horie K, Nangaku M, Tanaka S, van Ypersele DS, Kurokawa K (1998) Renal cataboloism of advanced glycation end products: the fate of pentosidine. Kidney Int 53:416–422

    Article  CAS  Google Scholar 

  • Miyata T, van Ypersele de Strihou C, Kurakawa K, Baynes JW (1999) Alteration in non-enzymatic biochemistry in uraemia: origin and significance of “carbonyl stress” in long term uraemic complications. Kidney Int 55:389–399

    Article  CAS  Google Scholar 

  • Nakagawa T, Yokozawa T, Terasawa K, Shu S, Juneja LR (2002) Protective activity of green tea against free radical- and glucose-mediated protein damage. J Agric Food Chem 50:2418–2422

    Article  CAS  Google Scholar 

  • Nicholl ID, Bucala R (1998) AGE and cigarette smoking. Cell Mol Biol 44:1025–1033

    CAS  Google Scholar 

  • Nursten H ( 2005a) Introduction. In: The Maillard Reaction Chemistry, Biochemistry and Implications. The Royal Society of Chemistry, pp 1–4

  • Nursten H (2005b) Recent advances. In: The Maillard Reaction Chemistry, Biochemistry and implications. The Royal Society of Chemistry, pp 31–51

  • O’Brien J, Morrissey PA (1989) Nutritional and toxicological aspects of the maillard browning reaction in foods. Crit Rev Food Sci Nutr 28:211–248

    Article  Google Scholar 

  • Peculis R, Konrade I, Skapare E, Fridmanis D, Nikitina-Zake L, Lejnieks A, Pirags V, Dambrova M, Klovins J (2013) Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene 515:140–143

    Article  CAS  Google Scholar 

  • Peng X, Cheng KW, Ma J, Chen B, Ho CT, Lo C et al (2008a) Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J Agric Food Chem 56:1907–1911

    Article  CAS  Google Scholar 

  • Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M (2008b) Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 106:475–481

    Article  CAS  Google Scholar 

  • Peng X, Ma J, Cheng KW, Jiang Y, Chen F, Wang M (2010) The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem 119:49–53

    Article  CAS  Google Scholar 

  • Peppa MC, He C, Hattori M et al (2003a) Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes 52:1441–1448

    Article  CAS  Google Scholar 

  • Peppa M, Brem H, Ehrlich P, Zhang JG, Cai W, Li Z, Croitoru A, Thung S, Vlassara H (2003b) Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes 52:2805–2813

    Article  CAS  Google Scholar 

  • Perez-Locas C, Yaylayan VA (2010) The Maillard reaction and food quality deterioration. In: Skibsted LH, Risbo J, Andersen ML (eds) Chemical deterioration and physical instability of food and beverages. Woodhead Publishing, Cambridge, pp 70–94

    Chapter  Google Scholar 

  • Pouillart P, Mauprivez H, Ait-Ameur L, Cayzeele A, Lecerf JM, Tessier FJ, Birlouez-Aragon I (2008) Strategy for the study of the health impact of dietary maillard products in clinical studies – the example of the ICARE clinical study on healthy adults. Ann N Y Acad Sci 1126:173–176

    Article  CAS  Google Scholar 

  • Poulsen MW, Hedegaard RV, Anderson JM, Courten B, Bugel S, Nielsen J, Skibsted LH, Dragsted L (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. doi:10.1016/j.fct.2013.06.052

    Google Scholar 

  • Rabbani N, Thornalley PJ (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42:1133–1142

    Article  CAS  Google Scholar 

  • Rahbar S, Figarola J (2002) Inhibitors and breakers of advanced glycation endproducts (AGEs): a review. Current medicinal chemistry – immunology. Endocrine & Metabolic Agents 2:135–161

    CAS  Google Scholar 

  • Rahbar S, Blumenfe O, Ranney HM (1969) Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 36:838–843

    Article  CAS  Google Scholar 

  • Raj DS, Choudhury D, Welbourne TC, Levi M (2000) AGE: a nephrologist’s perspective. Am J Kidney Dis 35:365–380

    Article  CAS  Google Scholar 

  • Rufian-Henares JA, Guerra-Henandez E, Garcia-Villanova B (2004) Pyralline content in enteral formula processing and storage and model systems. Eur Food Res Technol 219:42–47

    Article  CAS  Google Scholar 

  • Rutter K, Sell DR, Fraser N, Obrenovich M, Zito M, Starke-Reed P et al (2003) Green tea extract suppresses the age-related increase in collagen crosslinking and fluorescent products in C57BL/6 mice. Int J Vitam Nutr Res 73(6):453–460

    Article  CAS  Google Scholar 

  • Sano H, Higashi T, Matsumoto K et al (1998) Insulin enhances macrophage scavenger receptor mediated endocytic uptake of advanced glycated end products. J Biol Chem 273:8630–8637

    Article  CAS  Google Scholar 

  • Schmidt AM, Hori O, Brett J, Yan SD, Wautier J, Stern D (1994) Cellular receptors for AGE’s implication for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528

    Article  CAS  Google Scholar 

  • Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403

    Article  CAS  Google Scholar 

  • Schmidt AM, Hori O, Cao R et al (1996) RAGE a novel receptor for AGE’s. Diabetes 45(Suppl 3):S77–S80

    Article  CAS  Google Scholar 

  • Schmidt AM, Yan SD, Wautier J-L, Stern D (1999) activation of receptor for advanced glycation end-products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497

    Article  CAS  Google Scholar 

  • Sebekova K, Faist V, Hofmann T, Schinzel R, Heidland A (2003) Effects of a diet rich in advanced glycation end products in the rat remnant kidney model. Am J Kidney Dis 41:48–51

    Article  Google Scholar 

  • Sebekova K, Saavedra G, Zumpe C, Somoza V, Klenovicsova K, Birlouez-Aragon I (2008) Plasma concentration and urinary excretion of Ne-(carboxymethyl)lysine in breast milk- and formula-fed infants. Ann N Y Acad Sci 1126:177–180

    Article  CAS  Google Scholar 

  • Seiquer I, Diaz-Alguacil J, Delgado-Andrade C, Lopez-Frias M, Munoz HA, Galdo G, Navarro MP (2006) Diets rich in maillard reaction products affect protein digestibility in adolescent males aged 11–14 y. Am J Clin Nutr 83:1082–1088

    CAS  Google Scholar 

  • Shangari N, Depeint F, Furrer R, Bruce WR, O’Brien PJ (2005) The effects of partial thiamin deficiency and oxidative stress (i.e., glyoxal and methylglyoxal) on the levels of alpha-oxoaldehyde plasma protein adducts in Fischer 344 rats. FEBS Lett 579:5596–5602

    Article  CAS  Google Scholar 

  • Skog KI, Johansson MA, Jagerstad MI (1998) Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem Toxicol 36:879–896

    Article  CAS  Google Scholar 

  • Skovsted IC, Christensen M, Breinholt J (1998) Characterisation of a novel age-compound derived from lysine and 3-deoxyglucasone. Cell Mol Biol 44:1159–1163

    CAS  Google Scholar 

  • Smit AJ, Lutgers HL (2004) The clinical relevance of advanced glycation endproducts (AGE) and recent developments in pharmaceutics to reduce AGE accumulation. Curr Med Chem 11:2767–2784

    Article  CAS  Google Scholar 

  • Somoza V, Wenzel E, Weiss C, Clawin-Radecker I, Grubel N, Erbersdobler HF (2006) Dose-dependent utilisation of casein-linked lysinoalanine, N(epsilon)-fructoselysine and N(epsilon)-carboxymethyllysine in rats. Mol Nutr Food Res 50:833–841

    Article  CAS  Google Scholar 

  • Stitt AW, Bucala R, Vlassara H (1997a) Atherogenesis and advanced glycation: promotion, progression and prevention. Ann NY Acad Sci 811:115–129

    Article  CAS  Google Scholar 

  • Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997b) Advanced glycated end-products (AGE) co-localise with AGE receptors in the retinal vasculature of diabetic and AGE infused rats. Am J Pathol 150:523–539

    CAS  Google Scholar 

  • Story M, Hayes M, Kalina B (1996) Availability of foods in high schools: is there cause for concern? J Am Diet Assoc 96:123–126

    Article  CAS  Google Scholar 

  • Suzuki D, Miyata T, Saotome N, Horie K, Inagi R, Ysauda Y, Uchida K, Izuhara Y, Yagame M, Sakai H, Kurokawa K (1999) Immunohistochemical evidence for an increased oxidative stress and carbonyl modification in protein in diabetic glomerular lesions. J Am Soc Nephrol 10:822–832

    CAS  Google Scholar 

  • Tan AL, Sourris KC, Harcourt BE, Thallas-Bonke V, Penfold S, Andrikopoulos S, Thomas MC, O’Brien RC, Bierhaus A, Cooper ME, Forbes JM, Coughlan MT (2010) Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. Am J Physiol Ren Physiol 298:763–770

    Article  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  • Thornalley PJ (1996) Pharmacology of methylglyoxal. Gen Pharmacol 27:565–573

    Article  CAS  Google Scholar 

  • Thornalley PJ (1998) Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs. Cell Mol Biol 44:1013–1023

    CAS  Google Scholar 

  • Thornalley PJ, Westwood M, Lo TW, McLellan AC (1995) Formation of methylglyoxal – modified proteins in vitro and in vivo and their involvement in AGE – related processes. Contrib Nephrol 112:24–31

    Article  CAS  Google Scholar 

  • Thornalley PJ, Lang borg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-DG in the glycation of proteins. Biochem J 344:109–116

    Article  CAS  Google Scholar 

  • Ulrich P, Cerami A (2001) Protein glycation, diabetes and aging. Recent Prog Horm Res 56:21

    Article  Google Scholar 

  • Uribarri J. (2012) Advanced Glycation End Products. In: Daugirdas JT. (ed) handbook of chronic kidney disease management. Lippincott Willliams and Wilkins, pp 152–158

  • Uribarri J, Peppa M, Cai W, Goldberg T et al (2003) Restriction of dietary glycotoxins markedly reduces AGE toxins in renal failure patients. J Am Soc Nephrol 14:728–731

    Article  CAS  Google Scholar 

  • Uribarri J, Cai WJ, Sandu O, Peppa M, Goldberg T, Vlassara H (2005) Diet- derived advanced glycation end products are major contributors to the body’s AGE pool and induce inflammation in healthy subjects. Ann N Y Acad Sci 1043:461–466

    Article  CAS  Google Scholar 

  • Uribarri J, Cai W, Peppa M, Goodman S, Ferruci L, Striker G, Vlassara H (2007) Circulating glycotoxins and dietary advanced glycation end-products: Two links to inflammatory response oxidative stress, and aging. J Gerontol A Biol Sci Med Sci 62:427–433

    Article  Google Scholar 

  • Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H (2010) Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc 110(6):911–16

    Article  Google Scholar 

  • Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fy hrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201

    Article  CAS  Google Scholar 

  • Verzijl N, Bank RA, TeKoppele JM, DeGroot J (2003) AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol 15:616–622

    Article  Google Scholar 

  • Vikram VB, Ramesh MN, Prapulla SG (2005) Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J Food Eng 69:31–40

    Article  Google Scholar 

  • Vlassara H (2001) The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Rev 17:436–443

    Article  CAS  Google Scholar 

  • Vlassara H, Bucala R (1996) Recent progress in advanced glycation and diabetic vascular disease: role of AGE receptors. Diabetes 45(Suppl 3):65–66

    Article  Google Scholar 

  • Vlassara H, Uribarri J (2004) Glycoxidation and diabetic complications: modern lessons and a warning? Rev Endocr Metab Disord 5:181–188

    Article  CAS  Google Scholar 

  • Vlassara H, Cai W, Crandall  J, Goldberg T, Oberstein R, Dardaine V, Peppa M, Rayfield EJ (2002) Inflammatory mediators are induced by dietary glycotoxins: a major risk factor for diabetic angiopathy. Proc Natl Acad Sci U S A 99:15596–15601

  • Voziyan PA, Metz TO, Baynes JW, Hudson BG (2002) A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem 277:3397–3403

    Article  CAS  Google Scholar 

  • Wu LY, Juan CC, Ho LT, Hsu YP, Hwang LS (2004) Effect of green tea supplement on insulin sensitivity in Sprague–Dawley rats. J Agric Food Chem 52:643–648

    Article  CAS  Google Scholar 

  • Wu JC, Li XH, Peng YD, Wang JB, Tang JF, Wang YF (2011) Association of two glyoxalase I gene polymorphisms with nephropathy and retinopathy in type 2 diabetes. J Endocrinol Investig. doi:10.3275/7856

    Google Scholar 

  • Xue M, Rabbani N, Momiji H, Imbasi P, Anwar MM, Kitteringham N, Park BK, Souma T, Moriguchi T, Yamamoto M, Thornalley PJ (2012) Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochem J 443:213–222

    Article  CAS  Google Scholar 

  • Yaacoub R, Saliba R, Nsouli B, Khalaf G, Birlouez-Aragon I (2008) Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. Journal Agric Food Chem 6:7082–7090

  • Yamaguchi F, Ariga T, Yoshimura Y, Nakazawa H (2000) Antioxidative and anti-glycation activity of garcinol from garcinia indica fruit rind. J Agric Food Chem 48:180–185

    Article  CAS  Google Scholar 

  • Yokozawa T, Nakagawa T (2004) Inhibitory effects of Luobuma tea and its components against glucose-mediated protein damage. Food Chem Toxicol 42:975–981

    Article  CAS  Google Scholar 

  • Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2009) A perspective on the maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8:754–769

    Article  CAS  Google Scholar 

  • Zheng F, He C, Cai W, Hattori M, Steffes M, Vlassara H (2002) Prevention of diabetic nephropathy in mice by a diet low in glycoxidation products. Diabetes Metab Res Rev 18:224–237

    Article  Google Scholar 

  • Zieman S, Kass D (2004) Advanced glycation end product cross-linking: pathophysiologic role and therapeutic target in cardiovascular disease. Congest Heart Fail 10:144–149

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarjeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, C., Kaur, A., Thind, S.S. et al. Advanced glycation End-products (AGEs): an emerging concern for processed food industries. J Food Sci Technol 52, 7561–7576 (2015). https://doi.org/10.1007/s13197-015-1851-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-015-1851-y

Keywords