Skip to main content

Advertisement

Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nakajima K, Fujimoto, Kenta and Yaoita, Yoshio Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol 2005;16(2):271–280.

  2. Godlewski M, Kobylińska A. Programmed cell death-strategy for maintenance cellular organisms homeostasis. Postepy higieny i medycyny doswiadczalnej (Online). 2016;70:1229–44.

  3. Kierszenbaum AL, Tres L. Histology and cell biology: an introduction to pathology E-book. Elsevier Health Sciences; 2015.

  4. Deb P, Sharma S, Hassan K. Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis. Pathophysiology. 2010;17(3):197–218.

    CAS  PubMed  Google Scholar 

  5. Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR. Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rodents. PLoS One. 2013;8(9):e73481.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ginsberg MD. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis lecture. Stroke. 2003;34(1):214–23.

    PubMed  Google Scholar 

  7. Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19(3–4):151–67.

    CAS  PubMed  Google Scholar 

  8. Sekerdag E, Solaroglu I, Gursoy-Ozdemir Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr Neuropharmacol. 2018;16(9):1396–415.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roy-O’Reilly M, McCullough LD. Age and sex are critical factors in ischemic stroke pathology. Endocrinology. 2018;159(8):3120–31.

    PubMed  PubMed Central  Google Scholar 

  10. Bushnell CD, Reeves MJ, Zhao X, Pan W, Prvu-Bettger J, Zimmer L, et al. Sex differences in quality of life after ischemic stroke. Neurology. 2014;82(11):922–31.

    PubMed  PubMed Central  Google Scholar 

  11. Gattringer T, Ferrari J, Knoflach M, Seyfang L, Horner S, Niederkorn K, et al. Sex-related differences of acute stroke unit care: results from the Austrian stroke unit registry. Stroke. 2014;45(6):1632–8.

    PubMed  Google Scholar 

  12. Gillum LA, Mamidipudi SK, Johnston SC. Ischemic stroke risk with oral contraceptives: a meta-analysis. Jama. 2000;284(1):72–8.

    CAS  PubMed  Google Scholar 

  13. Kim T, Chelluboina B, Chokkalla AK, Vemuganti R. Age and sex differences in the pathophysiology of acute CNS injury. Neurochem Int. 2019;127:22–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sarmah D, Kaur H, Saraf J, Pravalika K, Goswami A, Kalia K, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res. 2018;9(4):356–74.

    PubMed  Google Scholar 

  15. Bursch W, Ellinger A, Kienzl H, Török L, Pandey S, Sikorska M et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. 1996;17(8):1595–607.

  16. Clarke PG. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol. 1990;181(3):195–213.

    CAS  Google Scholar 

  17. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146(1):3.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull. 1998;46(4):281–309.

    CAS  PubMed  Google Scholar 

  19. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79(4):1431–568.

    CAS  PubMed  Google Scholar 

  20. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5):e331–e9.

    PubMed  Google Scholar 

  21. Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–77.

    CAS  PubMed  Google Scholar 

  22. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sarmah D, Kaur H, Saraf J, Vats K, Pravalika K, Wanve M, et al. Mitochondrial dysfunction in stroke: implications of stem cell therapy. Transl Stroke Res. 2019;10(2):121–36.

    CAS  Google Scholar 

  24. Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, et al. Inflammasomes in stroke: a triggering role for acid-sensing ion channels. Ann N Y Acad Sci. 2018;1431(1):14–24.

    CAS  PubMed  Google Scholar 

  25. Li H, Zhu H, Xu C-j, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998;94(4):491–501.

    CAS  PubMed  Google Scholar 

  26. Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 2004;1(1):17–25.

    PubMed  PubMed Central  Google Scholar 

  27. Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis. J Neurochem. 2004;90(6):1281–9.

    CAS  PubMed  Google Scholar 

  28. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakka VP, Gusain A, Mehta SL, Raghubir R. Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol. 2008;37(1):7–38.

    CAS  PubMed  Google Scholar 

  30. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer. 2002;2(6):420.

    CAS  PubMed  Google Scholar 

  31. Naismith JH, Sprang SR. Modularity in the TNF-receptor family. Trends Biochem Sci. 1998;23(2):74–9.

    CAS  PubMed  Google Scholar 

  32. Lawen A. Apoptosis—an introduction. Bioessays. 2003;25(9):888–96.

    CAS  PubMed  Google Scholar 

  33. Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):267–82.

    CAS  Google Scholar 

  34. Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ. Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci. 1999;19(14):5932–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rupalla K, Allegrini PR, Sauer D, Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998;96(2):172–8.

    CAS  PubMed  Google Scholar 

  36. Botchkina GI, Geimonen E, Bilof ML, Villarreal O, Tracey KJ. Loss of NF-κB activity during cerebral ischemia and TNF cytotoxicity. Mol Med. 1999;5(6):372–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cregan SP, Arbour NA, MacLaurin JG, Callaghan SM, Fortin A, Cheung EC, et al. p53 activation domain 1 is essential for PUMA upregulation and p53-mediated neuronal cell death. J Neurosci. 2004;24(44):10003–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci. 2000;910(1):121–39.

    CAS  PubMed  Google Scholar 

  39. Prives C, Hall PA. The p53 pathway. J Pathol. 1999;187(1):112–26.

    CAS  PubMed  Google Scholar 

  40. Morrison RS, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res. 2003;28(1):15–27.

    CAS  PubMed  Google Scholar 

  41. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000;1(2):120.

    CAS  PubMed  Google Scholar 

  42. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 2001;7(3):683–94.

    CAS  PubMed  Google Scholar 

  43. Xue L, Chu F, Cheng Y, Sun X, Borthakur A, Ramarao M, et al. Siva-1 binds to and inhibits BCL-XL-mediated protection against UV radiation-induced apoptosis. Proc Natl Acad Sci. 2002;99(10):6925–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Nozaki K, Nishimura M, Hashimoto N. Mitogen-activated protein kinases and cerebral ischemia. Mol Neurobiol. 2001;23(1):1–19.

    CAS  PubMed  Google Scholar 

  45. Shaul YD, Seger R. The MEK/ERK cascade: from signaling specificity to diverse functions. Biochimica et Biophysica Acta (BBA)-molecular Cell Res 2007;1773(8):1213–1226.

  46. Kim EK, Choi E-J. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2010;1802(4):396–405.

    CAS  Google Scholar 

  47. Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK Cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(9):1619–33.

    CAS  Google Scholar 

  48. Irving EA, Bamford M. Role of mitogen-and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab. 2002;22(6):631–47.

    CAS  PubMed  Google Scholar 

  49. Gao Y, Signore AP, Yin W, Cao G, Yin X-M, Sun F, et al. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab. 2005;25(6):694–712.

    CAS  PubMed  Google Scholar 

  50. Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci. 2003;100(25):15184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Donovan N, Becker EB, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem. 2002;277(43):40944–9.

    CAS  PubMed  Google Scholar 

  52. Becker EB, Howell J, Kodama Y, Barker PA, Bonni A. Characterization of the c-Jun N-terminal kinase-BimEL signaling pathway in neuronal apoptosis. J Neurosci. 2004;24(40):8762–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Barone F, Irving E, Ray A, Lee J, Kassis S, Kumar S, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev. 2001;21(2):129–45.

    CAS  PubMed  Google Scholar 

  54. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2007;1773(8):1358–75.

    CAS  Google Scholar 

  55. Takeda K, Ichijo H. Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells. 2002;7(11):1099–111.

    CAS  PubMed  Google Scholar 

  56. Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R. Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates max protein. Proc Natl Acad Sci. 1995;92(23):10531–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Janknecht R, Hunter T. Convergence of MAP kinase pathways on the ternary complex factor sap-1a. EMBO J. 1997;16(7):1620–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Porras A, Guerrero Arroyo MdC. Role of p38α in apoptosis: implication in cancer development and therapy. 2011.

  59. Lou Y-L, Guo F, Liu F, Gao F-L, Zhang P-Q, Niu X, et al. miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem. 2012;370(1–2):45–51.

    CAS  PubMed  Google Scholar 

  60. Corada M, Morini MF, Dejana E. Signaling pathways in the specification of arteries and veins. Arterioscler Thromb Vasc Biol. 2014;34(11):2372–7.

    CAS  PubMed  Google Scholar 

  61. Grieskamp T, Rudat C, Lüdtke TH-W, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108(7):813–23.

    CAS  PubMed  Google Scholar 

  62. Quillien A, Moore JC, Shin M, Siekmann AF, Smith T, Pan L, et al. Distinct notch signaling outputs pattern the developing arterial system. Development. 2014;141(7):1544–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zacharek A, Chen J, Cui X, Yang Y, Chopp M. Simvastatin increases notch signaling activity and promotes arteriogenesis after stroke. Stroke. 2009;40(1):254–60.

    CAS  PubMed  Google Scholar 

  64. Cheng Y-L, Park J-S, Manzanero S, Choi Y, Baik S-H, Okun E, et al. Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 2014;62:286–95.

    CAS  PubMed  Google Scholar 

  65. Zhao Y, Deng B, Li Y, Zhou L, Yang L, Gou X, et al. Electroacupuncture pretreatment attenuates cerebral ischemic injury via notch pathway-mediated up-regulation of hypoxia inducible factor-1α in rats. Cell Mol Neurobiol. 2015;35(8):1093–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang X, Klein R, Tian X, Cheng H-T, Kopan R, Shen J. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev Biol. 2004;269(1):81–94.

    CAS  PubMed  Google Scholar 

  67. Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228(2):151–65.

    CAS  PubMed  Google Scholar 

  68. Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N, et al. Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke. 2010;41(10_suppl_1):S64–71.

    PubMed  PubMed Central  Google Scholar 

  69. Meng S, Su Z, Liu Z, Wang N, Wang Z. Rac1 contributes to cerebral ischemia reperfusion-induced injury in mice by regulation of Notch2. Neuroscience. 2015;306:100–14.

    CAS  PubMed  Google Scholar 

  70. Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J. Numb/notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 2013;38(2):254–61.

    CAS  PubMed  Google Scholar 

  71. Park JS, Manzanero S, Chang JW, Choi Y, Baik SH, Cheng YL, et al. Calsenilin contributes to neuronal cell death in ischemic stroke. Brain Pathol. 2013;23(4):402–12.

    CAS  PubMed  Google Scholar 

  72. Tang S-C, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, et al. Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci. 2007;104(34):13798–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ang HL, Tergaonkar VJB. Notch and NFκB signaling pathways: do they collaborate in normal vertebrate brain development and function? 2007;29(10):1039–47.

  74. Yin J, Li H, Feng C, Zuo Z. Inhibition of brain ischemia-caused notch activation in microglia may contribute to isoflurane postconditioning-induced neuroprotection in male rats. CNS Neurol Disord Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2014;13(4):718–32.

  75. Arumugam TV, Chan SL, Jo D-G, Yilmaz G, Tang S-C, Cheng A, et al. Gamma secretase–mediated notch signaling worsens brain damage and functional outcome in ischemic stroke. Nat Med. 2006;12(6):621.

    CAS  PubMed  Google Scholar 

  76. Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12(3):371–84.

    CAS  PubMed  Google Scholar 

  77. Wang S, Yuan Y, Xia W, Li F, Huang Y, Zhou Y, et al. Neuronal apoptosis and synaptic density in the dentate gyrus of ischemic rats’ response to chronic mild stress and the effects of notch signaling. PLoS One. 2012;7(8):e42828.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang H-p, Sun Y-y, Chen X-m, Yuan L-b, Su B-x, Ma R, et al. The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia–reperfusion model: the role of the notch signaling pathway. NeuroMolecular Med. 2014;16(1):191–204.

    CAS  PubMed  Google Scholar 

  79. Yang Q, Yan W, Li X, Hou L, Dong H, Wang Q, et al. Activation of canonical notch signaling pathway is involved in the ischemic tolerance induced by sevoflurane preconditioning in mice. Anesthesiology. 2012;117(5):996–1005.

    CAS  PubMed  Google Scholar 

  80. Yao J, Qian C. Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFα-induced apoptosis. Dig Liver Dis. 2009;41(12):867–74.

    CAS  PubMed  Google Scholar 

  81. Huang Y, Chen L, Guo L, Hupp TR, Lin Y. Evaluating DAPK as a therapeutic target. Apoptosis. 2014;19(2):371–86. https://doi.org/10.1007/s10495-013-0919-2.

    Article  CAS  PubMed  Google Scholar 

  82. Hainsworth AH, Allsopp RC, Jim A, Potter JF, Lowe J, Talbot CJ, et al. Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimer’s disease patients and aged controls. Neuropathol Appl Neurobiol. 2010;36(1):17–24. https://doi.org/10.1111/j.1365-2990.2009.01035.x.

    Article  CAS  PubMed  Google Scholar 

  83. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 1995;9(1):15–30.

    CAS  PubMed  Google Scholar 

  84. Kawai T, Nomura F, Hoshino K, Copeland NG, Gilbert DJ, Jenkins NA, et al. Death-associated protein kinase 2 is a new calcium/calmodulin-dependent protein kinase that signals apoptosis through its catalytic activity. Oncogene. 1999;18(23):3471.

    CAS  PubMed  Google Scholar 

  85. Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol. 2000;20(3):1044–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kawai T, Matsumoto M, Takeda K, Sanjo H, Akira S. ZIP kinase, a novel serine/threonine kinase which mediates apoptosis. Mol Cell Biol. 1998;18(3):1642–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanjo H, Kawai T, Akira S. DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem. 1998;273(44):29066–71.

    CAS  PubMed  Google Scholar 

  88. Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 1997;16(5):998–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kögel D, Bierbaum H, Preuss U, Scheidtmann KH. C-terminal truncation of Dlk/ZIP kinase leads to abrogation of nuclear transport and high apoptotic activity. Oncogene. 1999;18(51):7212.

    PubMed  Google Scholar 

  90. Inbal B, Cohen O, Polak-Charcon S, Kopolovic J, Vadai E, Eisenbach L, et al. DAP kinase links the control of apoptosis to metastasis. Nature. 1997;390(6656):180.

    CAS  PubMed  Google Scholar 

  91. Cohen O, Inbal B, Kissil JL, Raveh T, Berissi H, Spivak-Kroizaman T, et al. DAP-kinase participates in TNF-α–and Fas-induced apoptosis and its function requires the death domain. J Cell Biol. 1999;146(1):141–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamamoto M, Takahashi H, Nakamura T, Hioki T, Nagayama S, Ooashi N, et al. Developmental changes in distribution of death-associated protein kinase mRNAs. J Neurosci Res. 1999;58(5):674–83.

    CAS  PubMed  Google Scholar 

  93. Baffy G, Miyashita T, Williamson J, Reed J. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem. 1993;268(9):6511–9.

    CAS  PubMed  Google Scholar 

  94. Pinton P, Ferrari D, Magalhães P, Schulze-Osthoff K, Di Virgilio F, Pozzan T, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2–overexpressing cells. J Cell Biol. 2000;148(5):857–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bialik S, Kimchi A. The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem. 2006;75:189–210. https://doi.org/10.1146/annurev.biochem.75.103004.142615.

    Article  CAS  PubMed  Google Scholar 

  96. Shamloo M, Soriano L, Wieloch T, Nikolich K, Urfer R, Oksenberg D. Death-associated protein kinase is activated by dephosphorylation in response to cerebral ischemia. J Biol Chem. 2005;280(51):42290–9. https://doi.org/10.1074/jbc.M505804200.

    Article  CAS  PubMed  Google Scholar 

  97. Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 2010;140(2):222–34. https://doi.org/10.1016/j.cell.2009.12.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chi S-W. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47(3):167.

    PubMed  PubMed Central  Google Scholar 

  99. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, et al. DAPK1–p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 2014;34(19):6546–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang S, Shi X, Li H, Pang P, Pei L, Shen H, et al. DAPK1 signaling pathways in stroke: from mechanisms to therapies. Mol Neurobiol. 2017;54(6):4716–22.

    CAS  PubMed  Google Scholar 

  101. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 2009;10(3):285–92. https://doi.org/10.1038/embor.2008.246.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJ, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med. 2011;15(10):2025–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis multiple pathways and activation of p53-up-regulated modulator of apoptosis (puma) and noxa by p53. J Biol Chem. 2006;281(11):7260–70.

    CAS  PubMed  Google Scholar 

  105. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361(16):1570–83. https://doi.org/10.1056/NEJMra0901217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pandey AK, Shukla SC, Bhattacharya P, Patnaik R. A possible therapeutic potential of quercetin through inhibition of μ-calpain in hypoxia induced neuronal injury: a molecular dynamics simulation study. Neural Regen Res. 2016;11(8):1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. International review of cell and molecular biology. Elsevier; 2012. p. 229–317.

  108. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62. https://doi.org/10.1016/j.cub.2014.03.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Investig Surg. 2005;18(6):335–50.

    Google Scholar 

  110. Wu M-y, Yiang G-t, Liao W-T, Tsai AP-Y, Cheng Y-L, Cheng P-W, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 2018;46(4):1650–67.

    CAS  PubMed  Google Scholar 

  111. Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216. https://doi.org/10.1186/s12974-019-1602-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dabrowska S, Andrzejewska A, Strzemecki D, Muraca M, Janowski M, Lukomska B. Human bone marrow mesenchymal stem cell-derived extracellular vesicles attenuate neuroinflammation evoked by focal brain injury in rats. J Neuroinflammation. 2019;16(1):216.

    PubMed  PubMed Central  Google Scholar 

  113. Tripathi AK, Dhanesha N, Kumar S. Stroke Induced Blood-Brain Barrier Disruption. Advancement in the Pathophysiology of Cerebral Stroke. Springer; 2019. p. 23–41.

  114. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16(6):663–9.

    CAS  PubMed  Google Scholar 

  115. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke E, et al. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 2009;16(1):3.

    CAS  PubMed  Google Scholar 

  116. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32(1):37–43.

    CAS  PubMed  Google Scholar 

  117. Festjens N, Berghe TV, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2006;1757(9–10):1371–87.

    CAS  Google Scholar 

  118. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489.

    CAS  PubMed  Google Scholar 

  119. Weber K, Roelandt R, Bruggeman I, Estornes Y, Vandenabeele P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun Biol. 2018;1(1):6.

    PubMed  PubMed Central  Google Scholar 

  120. Moriwaki K, Chan FK-M. RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 2013;27(15):1640–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous RIP3. Neurobiol Dis. 2014;68:26–36.

    CAS  PubMed  Google Scholar 

  122. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148(1–2):213–27.

    CAS  PubMed  Google Scholar 

  123. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47.

    Google Scholar 

  124. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–81.

    CAS  PubMed  Google Scholar 

  125. Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133–46.

    CAS  PubMed  Google Scholar 

  126. Galluzzi L, Kepp O, Kroemer G. MLKL regulates necrotic plasma membrane permeabilization. Cell Res. 2014;24(2):139.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.

    CAS  PubMed  Google Scholar 

  128. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Solenski NJ, di Pierro CG, Trimmer PA, Kwan A-L, Helms GA. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke. 2002;33(3):816–24.

    PubMed  Google Scholar 

  131. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103(2):253–62.

    CAS  PubMed  Google Scholar 

  132. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261–9.

    CAS  PubMed  Google Scholar 

  133. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    CAS  PubMed  Google Scholar 

  134. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10(1):151–62.

    CAS  PubMed  Google Scholar 

  135. Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27 kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218.

    CAS  PubMed  Google Scholar 

  137. Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex Beclin 1 is a novel BH3-only protein. J Biol Chem. 2007;282(17):13123–32.

    CAS  PubMed  Google Scholar 

  138. Marquez RT, Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2012;2(2):214.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Xu F, Gu J-H, Qin Z-H. Neuronal autophagy in cerebral ischemia. Neurosci Bull. 2012;28(5):658–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005;122(6):927–39.

    CAS  PubMed  Google Scholar 

  141. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–34.

    CAS  PubMed  Google Scholar 

  142. Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kesharwani R, Sarmah D, Kaur H, Mounika L, Verma G, Pabbala V, et al. Interplay between mitophagy and inflammasomes in neurological disorders. ACS Chem Neurosci. 2019;10(5):2195–208.

    CAS  PubMed  Google Scholar 

  145. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2013;1833(12):3460–70.

    CAS  Google Scholar 

  146. Matute C. Mechanisms of glial death and protection. Primer on cerebrovascular diseases. Elsevier; 2017. p. 215–219.

  147. Fern RF, Matute C, Stys PK. White matter injury: ischemic and nonischemic. Glia. 2014;62(11):1780–9.

    PubMed  Google Scholar 

  148. Matute C, Domercq M, Pérez-Samartín A, Ransom BR. Protecting white matter from stroke injury. Stroke. 2013;44(4):1204–11.

    PubMed  Google Scholar 

  149. Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103–20.

    CAS  PubMed  Google Scholar 

  150. Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019;47(3):410–8.

    PubMed  PubMed Central  Google Scholar 

  151. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2018;8:992.

    PubMed  PubMed Central  Google Scholar 

  153. Wu J-r, Q-z T, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197–206.

    CAS  PubMed  Google Scholar 

  154. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73(11–12):2195–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Conrad M, Friedmann Angeli JP. Glutathione peroxidase 4 (Gpx4) and ferroptosis: what’s so special about it? Mol Cell Oncol. 2015;2(3):e995047.

    PubMed  PubMed Central  Google Scholar 

  156. Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–76.

    CAS  PubMed  Google Scholar 

  157. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal. 2013;18(5):522–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol. 1998;141(6):1423–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, et al. Reprogramming cellular events by poly (ADP-ribose)-binding proteins. Mol Asp Med. 2013;34(6):1066–87.

    CAS  Google Scholar 

  161. Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147:233.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Dong Z, Pan K, Pan J, Peng Q, Wang Y. The possibility and molecular mechanisms of cell pyroptosis after cerebral ischemia. Neurosci Bull. 2018;34(6):1131–6.

    PubMed  PubMed Central  Google Scholar 

  163. Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol. 2014;30:91–8.

    CAS  PubMed  Google Scholar 

  164. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407.

    CAS  PubMed  Google Scholar 

  165. Poh L, Kang S-W, Baik S-H, Ng GYQ, She DT, Balaganapathy P, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47.

    CAS  PubMed  Google Scholar 

  166. Haas S, Weidner N, Winkler J. Adult stem cell therapy in stroke. Curr Opin Neurol. 2005;18(1):59–64.

    PubMed  Google Scholar 

  167. Yu ZF, Bruce-Keller AJ, Goodman Y, Mattson MP. Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res. 1998;53(5):613–25.

    CAS  PubMed  Google Scholar 

  168. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron. 1994;12(1):139–53.

    CAS  PubMed  Google Scholar 

  169. Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D, et al. Neuroprotection mediated by glial cell line-derived neurotrophic factor: involvement of a reduction of NMDA-induced calcium influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21(9):3024–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kilic U, Kilic E, Dietz GP, Bähr M. Intravenous TAT-GDNF is protective after focal cerebral ischemia in mice. Stroke. 2003;34(5):1304–10.

    PubMed  Google Scholar 

  171. Sumbria RK, Boado RJ, Pardridge WM. Combination stroke therapy in the mouse with blood–brain barrier penetrating IgG–GDNF and IgG–TNF decoy receptor fusion proteins. Brain Res. 2013;1507:91–6.

    CAS  PubMed  Google Scholar 

  172. Zhang Y, Pardridge WM. Blood–brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 2006;1111(1):227–229.

  173. Rabuffetti M, Sciorati C, Tarozzo G, Clementi E, Manfredi A, Beltramo M. Inhibition of caspase-1-like activity by ac-Tyr-Val-Ala-asp-chloromethyl ketone induces long-lasting neuroprotection in cerebral ischemia through apoptosis reduction and decrease of proinflammatory cytokines. J Neurosci. 2000;20(12):4398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Ray AM, Owen DE, Evans ML, Davis JB, Benham CD. Caspase inhibitors are functionally neuroprotective against oxygen glucose deprivation induced CA1 death in rat organotypic hippocampal slices. Brain Res. 2000;867(1–2):62–9.

    CAS  PubMed  Google Scholar 

  175. Xu X, Chua K-W, Chua CC, Liu C-F, Hamdy RC, Chua BH. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res. 2010;1355:189–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, et al. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke. 2017;48(7):1941–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, et al. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 2009;40(5):1877–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zhou H, Wang J, Jiang J, Stavrovskaya IG, Li M, Li W, et al. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury. J Neurosci. 2014;34(8):2967–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang W-h, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, et al. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke. 2008;39(2):455–62.

    PubMed  PubMed Central  Google Scholar 

  180. Zhang Y, Wang X, Baranov SV, Zhu S, Huang Z, Fellows-Mayle W, et al. Dipyrone inhibits neuronal cell death and diminishes hypoxic/ischemic brain injury. Neurosurgery. 2011;69(4):942–56.

    PubMed  Google Scholar 

  181. Yu Z, Luo H, Fu W, Mattson MP. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol. 1999;155(2):302–14.

    CAS  PubMed  Google Scholar 

  182. Kang S-J, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000;149(3):613–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhang X, Yuan Y, Jiang L, Zhang J, Gao J, Shen Z, et al. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: involvement of PARK2-dependent mitophagy. Autophagy. 2014;10(10):1801–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Zheng Y-q, Liu J-x, Li X-z, Xu L, Xu Y-g. RNA interference-mediated downregulation of Beclin1 attenuates cerebral ischemic injury in rats. Acta Pharmacol Sin. 2009;30(7):919.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the US Food and Drug Administration (FDA). Ann Neurol. 2009;66(1):6–10.

    PubMed  Google Scholar 

  186. Meurer WJ, Barth BE, Gaddis G, Vilke GM, Lam SH. Rapid systematic review: intra-arterial thrombectomy (“clot retrieval”) for selected patients with acute ischemic stroke. J Emerg Med. 2017;52(2):255–61.

    PubMed  Google Scholar 

  187. Fonarow GC, Smith EE, Saver JL, Reeves MJ, Bhatt DL, Grau-Sepulveda MV et al. Timeliness of tissue-type plasminogen activator therapy in acute ischemic stroke: patient characteristics, hospital factors, and outcomes associated with door-to-needle times within 60 minutes. Circulation. 2011;123(7):750–758.

  188. Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, et al. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. Exp Transl Stroke Med. 2015;7(1):2.

    PubMed  PubMed Central  Google Scholar 

  189. Yoo AJ, Andersson T. Thrombectomy in acute ischemic stroke: challenges to procedural success. J Stroke. 2017;19(2):121.

    PubMed  PubMed Central  Google Scholar 

  190. Sarmah D, Agrawal V, Rane P, Bhute S, Watanabe M, Kalia K, et al. Mesenchymal stem cell therapy in ischemic stroke: a meta-analysis of preclinical studies. Clin Pharmacol Ther. 2018;103(6):990–8.

    PubMed  Google Scholar 

  191. van Velthoven CT, Van De Looij Y, Kavelaars A, Zijlstra J, van Bel F, Huppi PS, et al. Mesenchymal stem cells restore cortical rewiring after neonatal ischemia in mice. Ann Neurol. 2012;71(6):785–96.

    PubMed  Google Scholar 

  192. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Molr Brain. 2015;8(1):65.

    Google Scholar 

  193. Guzman R, Janowski M, Walczak P. Intra-arterial delivery of cell therapies for stroke. Stroke. 2018;49(5):1075–82. https://doi.org/10.1161/STROKEAHA.117.018288.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Tang YH, Ma YY, Zhang ZJ, Wang YT, Yang GY. Opportunities and challenges: stem cell-based therapy for the treatment of ischemic stroke. CNS Neurosci Ther. 2015;21(4):337–47.

    PubMed  PubMed Central  Google Scholar 

  195. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis J. IV infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–9.

    CAS  PubMed  Google Scholar 

  196. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al. Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216(1):47–55.

    CAS  PubMed  Google Scholar 

  197. Hanabusa K, Nagaya N, Iwase T, Itoh T, Murakami S, Shimizu Y, et al. Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 2005;36(4):853–8.

    CAS  PubMed  Google Scholar 

  198. Pang A-L, Xiong L-L, Xia Q-J, Liu F, Wang Y-C, Liu F, et al. Neural stem cell transplantation is associated with inhibition of apoptosis, Bcl-xL upregulation, and recovery of neurological function in a rat model of traumatic brain injury. Cell Transplant. 2017;26(7):1262–75.

    PubMed  PubMed Central  Google Scholar 

  199. Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, et al. Exosomes from bone marrow mesenchymal stem cells inhibit neuronal apoptosis and promote motor function recovery via the Wnt/β-catenin signaling pathway. Cell Transplant. 2019;28(11):1373–83.

    PubMed  PubMed Central  Google Scholar 

  200. Ji Y, Ma Y, Chen X, Ji X, Gao J, Zhang L, et al. Microvesicles released from human embryonic stem cell derived-mesenchymal stem cells inhibit proliferation of leukemia cells. Oncol Rep. 2017;38(2):1013–20.

    CAS  PubMed  Google Scholar 

Download references

Funding

Authors acknowledge the International Society for Neurochemistry (ISN) Return Home grant, Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Govt. of India, and National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, Gandhinagar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallab Bhattacharya.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The article does not contain any studies with animals or human subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, A., Sarmah, D., Mounica, L. et al. Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl. Stroke Res. 11, 1185–1202 (2020). https://doi.org/10.1007/s12975-020-00806-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-020-00806-z

Keywords