Skip to main content
Log in

Lactobacillus crispatus 7-4 Mitigates Salmonella typhimurium-Induced Enteritis via the γ‑Glutamylcysteine-Mediated Nrf2 Pathway

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Salmonella typhimurium (S. typhimurium) constitutes a major public health concern. We have previously proven that Lactobacillus crispatus 7-4 (L. crispatus 7-4) can inhibit the growth of S. typhimurium and thus can be used as a biocontrol strategy to suppress foodborne S. typhimurium infections. However, the inhibitory effect and in-depth mechanism of L. crispatus 7-4 remain to be elucidated. In this study, we found that L. crispatus 7-4 can protect against S. typhimurium-induced ileum injury by promoting intestinal barrier integrity, maintaining intestinal mucosal barrier homeostasis, and reducing intestinal inflammatory response. Furthermore, we demonstrated that this probiotic strain can increase the abundance of Lactobacillus spp. to maintain microbial homeostasis and simultaneously increase the amount of γ‑glutamylcysteine (γ-GC) by activating the glutathione metabolic pathway. The increased γ-GC promoted the transcription of Nrf2 target genes, thereby improving the host antioxidant level, reducing reactive oxygen species (ROS) accumulation, and removing pro-inflammatory cytokines. In other words, L. crispatus 7-4 could activate the enterocyte Nrf2 pathway by improving γ-GC to protect against S. typhimurium-induced intestinal inflammation and oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Fattinger SA, Böck D, Di Martino ML, Deuring S, Samperio Ventayol P, Ek V, Furter M, Kreibich S, Bosia F, Müller-Hauser AA, Nguyen BD, Rohde M, Pilhofer M, Hardt WD, Sellin ME (2020) Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium. PLoS Pathog 16(5):e1008503. https://doi.org/10.1371/journal.ppat.1008503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wotzka SY, Nguyen BD, Hardt WD (2017) Salmonella Typhimurium Diarrhea reveals Basic principles of Enteropathogen infection and disease-promoted DNA Exchange. Cell Host Microbe 21(4):443–454. https://doi.org/10.1016/j.chom.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  3. Chousalkar K, Gole VC (2016) Salmonellosis acquired from poultry. Curr Opin Infect Dis 29(5):514–519. https://doi.org/10.1097/qco.0000000000000296

    Article  PubMed  Google Scholar 

  4. Yin X, Fu Y, Tate H, Pinto C, Dudley EG, M’Ikanatha NM (2022) Genomic analysis of Salmonella Typhimurium from humans and food sources accurately predicts phenotypic multi-drug resistance. Food Microbiol 103:103957. https://doi.org/10.1016/j.fm.2021.103957

    Article  CAS  PubMed  Google Scholar 

  5. Dai W, Zhang Y, Zhang J, Xue C, Yan J, Li X, Zheng X, Dong R, Bai J, Su Y, Xie P, Zhong W, Zhang H, Yan Z, Zhong W, Song Y (2021) Analysis of antibiotic-induced drug resistance of Salmonella enteritidis and its biofilm formation mechanism. Bioengineered 12(2):10254–10263. https://doi.org/10.1080/21655979.2021.1988251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mantegazza C, Molinari P, D’Auria E, Sonnino M, Morelli L, Zuccotti GV (2018) Probiotics and antibiotic-associated diarrhea in children: a review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol Res 128:63–72. https://doi.org/10.1016/j.phrs.2017.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Thanh Duy P, Thi Nguyen TN, Vu Thuy D, Chung The H, Alcock F, Boinett C, Dan Thanh HN, Thanh Tuyen H, Thwaites GE, Rabaa MA, Baker S (2020) Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant Shigella sonnei. Nat Microbiol 5(2):256–264. https://doi.org/10.1038/s41564-019-0645-9

    Article  CAS  PubMed  Google Scholar 

  8. Neveling DP, Dicks LMT (2021) Probiotics: an antibiotic replacement strategy for healthy broilers and productive rearing. Probiotics Antimicrob Proteins 13(1):1–11. https://doi.org/10.1007/s12602-020-09640-z

    Article  CAS  PubMed  Google Scholar 

  9. Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, Drider D (2019) Benefits and inputs from lactic acid Bacteria and their bacteriocins as Alternatives to Antibiotic Growth promoters during Food-Animal production. Front Microbiol 10:57. https://doi.org/10.3389/fmicb.2019.00057

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jeni RE, Dittoe DK, Olson EG, Lourenco J, Corcionivoschi N, Ricke SC, Callaway TR (2021) Probiotics and potential applications for alternative poultry production systems. Poult Sci 100(7):101156. https://doi.org/10.1016/j.psj.2021.101156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wan MLY, Forsythe SJ, El-Nezami H (2019) Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr 59(20):3320–3333. https://doi.org/10.1080/10408398.2018.1490885

    Article  CAS  PubMed  Google Scholar 

  12. Ding C, Wu H, Cao X, Ma X, Gao X, Gao Z, Liu S, Fan W, Liu B, Song S (2021) Lactobacillus johnsonii 3 – 1 and Lactobacillus crispatus 7 – 4 promote the growth performance and ileum development and participate in lipid metabolism of broilers. Food Funct 12(24):12535–12549. https://doi.org/10.1039/d1fo03209g

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Gui S, Liang Z, Liu A, Chen Z, Tang Y, Xiao M, Chu F, Liu W, Jin X, Zhu J, Lu X (2019) Musca domestica Cecropin (Mdc) alleviates Salmonella typhimurium-Induced Colonic Mucosal Barrier Impairment: associating with inflammatory and oxidative stress response, tight Junction as Well as Intestinal Flora. Front Microbiol 10:522. https://doi.org/10.3389/fmicb.2019.00522

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang K, Dupont A, Torow N, Gohde F, Leschner S, Lienenklaus S, Weiss S, Brinkmann MM, Kühnel M, Hensel M, Fulde M, Hornef MW (2014) Age-dependent enterocyte invasion and microcolony formation by Salmonella. PLoS Pathog 10(9):e1004385. https://doi.org/10.1371/journal.ppat.1004385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467(7314):426–429. https://doi.org/10.1038/nature09415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liaudet L, Murthy KG, Mabley JG, Pacher P, Soriano FG, Salzman AL, Szabó C (2002) Comparison of inflammation, organ damage, and oxidant stress induced by Salmonella enterica Serovar Muenchen flagellin and serovar Enteritidis lipopolysaccharide. Infect Immun 70(1):192–198. https://doi.org/10.1128/iai.70.1.192-198.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ (2019) Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol Mol Biol Rev 83(3):e00007–19. https://doi.org/10.1128/mmbr.00007-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johansson ME, Hansson GC (2016) Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol 16(10):639–649. https://doi.org/10.1038/nri.2016.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bronner DN, Faber F, Olsan EE, Byndloss MX, Sayed NA, Xu G, Yoo W, Kim D, Ryu S, Lebrilla CB, Bäumler AJ (2018) Genetic ablation of butyrate utilization attenuates gastrointestinal Salmonella disease. Cell Host Microbe 23(2):266–273e264. https://doi.org/10.1016/j.chom.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee Y, Sugihara K, Gillilland MG 3rd, Jon S, Kamada N, Moon JJ (2020) Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater 19(1):118–126. https://doi.org/10.1038/s41563-019-0462-9

    Article  CAS  PubMed  Google Scholar 

  21. Zarka MH, Bridge WJ (2017) Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol 11:631–636. https://doi.org/10.1016/j.redox.2017.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stockwell BR (2022) Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185(14):2401–2421. https://doi.org/10.1016/j.cell.2022.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Saeedi BJ, Liu KH, Owens JA, Hunter-Chang S, Camacho MC, Eboka RU, Chandrasekharan B, Baker NF, Darby TM, Robinson BS, Jones RM, Jones DP, Neish AS (2020) Gut-Resident Lactobacilli activate hepatic Nrf2 and protect against oxidative Liver Injury. Cell Metab 31(5):956–968e955. https://doi.org/10.1016/j.cmet.2020.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galán JE (2021) Salmonella Typhimurium and inflammation: a pathogen-centric affair. Nat Rev Microbiol 19(11):716–725. https://doi.org/10.1038/s41579-021-00561-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A (2022) Cross-talk between the intestinal epithelium and Salmonella Typhimurium. Front Microbiol 13:906238. https://doi.org/10.3389/fmicb.2022.906238

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li H, Shi J, Zhao L, Guan J, Liu F, Huo G, Li B (2021) Lactobacillus plantarum KLDS1.0344 and Lactobacillus acidophilus KLDS1.0901 mixture prevents Chronic Alcoholic Liver Injury in mice by protecting the intestinal barrier and regulating gut microbiota and liver-related pathways. J Agric Food Chem 69(1):183–197. https://doi.org/10.1021/acs.jafc.0c06346

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D, Wang Y (2018) Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9:1953. https://doi.org/10.3389/fmicb.2018.01953

    Article  PubMed  PubMed Central  Google Scholar 

  28. Xu C, Yan S, Guo Y, Qiao L, Ma L, Dou X, Zhang B (2020) Lactobacillus casei ATCC 393 alleviates enterotoxigenic Escherichia coli K88-induced intestinal barrier dysfunction via TLRs/mast cells pathway. Life Sci 244:117281. https://doi.org/10.1016/j.lfs.2020.117281

    Article  CAS  PubMed  Google Scholar 

  29. Tilg H, Zmora N, Adolph TE, Elinav E (2020) The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 20(1):40–54. https://doi.org/10.1038/s41577-019-0198-4

    Article  CAS  PubMed  Google Scholar 

  30. Engevik MA, Herrmann B, Ruan W, Engevik AC, Engevik KA, Ihekweazu F, Shi Z, Luck B, Chang-Graham AL, Esparza M, Venable S, Horvath TD, Haidacher SJ, Hoch KM, Haag AM, Schady DA, Hyser JM, Spinler JK, Versalovic J (2021) Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes 13(1):1–21. https://doi.org/10.1080/19490976.2021.1902717

    Article  CAS  PubMed  Google Scholar 

  31. Yan B, Chen YY, Wang W, Zhao J, Chen W, Gänzle M (2018) γ-Glutamyl cysteine ligase of Lactobacillus reuteri synthesizes γ-Glutamyl dipeptides in Sourdough. J Agric Food Chem 66(46):12368–12375. https://doi.org/10.1021/acs.jafc.8b05056

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Hu J, Long X, Pan Y, Mu J, Park KY, Zhao X (2021) Lactobacillus plantarum ZS62 alleviates Alcohol-Induced Gastric Injury in mice via an anti-oxidative mechanism. Drug Des Devel Ther 15:1667–1676. https://doi.org/10.2147/dddt.S292243

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20(7):1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aleksandrova K, Koelman L, Rodrigues CE (2021) Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol 42:101869. https://doi.org/10.1016/j.redox.2021.101869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Yuting Wu, Shuo Zhang, Jiwen Liu and Meihua Zhang for helping with the necropsy of experimental animals.

Funding

This work was supported by the National Key R&D Program (2022YFC2105005), the Forestry Science and Technology Innovation and Promotion Project of Jiangsu Province (LYKJ [2021]40), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

SS and WH designed the experiments. WH, DC, and CC carried out animal experiment, data analysis, and drafted the manuscript. WH and LS did the cell culture. GZ analyzed the qRT-PCR. WH and DC wrote the manuscript. CC revised the paper. SS, SW, and ZH reviewed the manuscript.

Corresponding author

Correspondence to Suquan Song.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2500 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Ding, C., Chi, C. et al. Lactobacillus crispatus 7-4 Mitigates Salmonella typhimurium-Induced Enteritis via the γ‑Glutamylcysteine-Mediated Nrf2 Pathway. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10294-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10294-4

Keywords

Navigation