Abstract
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.
Similar content being viewed by others
Abbreviations
- Ack-1:
-
Activated CDC42-associated kinase
- Csk:
-
Carboxyl-terminal Src kinase
- Fyn:
-
FGR and yes-related novel kinase
- Hck:
-
Hematopoetic cell kinase
- IB1:
-
Islet brain 1
- PEP:
-
Proline-enriched phosphatase
- PEST:
-
Proline/glutamic acid/serine/threonine-rich domain
- PTK:
-
Protein tyrosine kinase
- SH3:
-
Src homology 3
References
Akiva E, Friedlander G, Itzhaki Z, Margalit H (2012) A dynamic view of domain-motif interactions. PloS Comp Biol 8:e1002341
Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI (2010) Crystal structure of the Src family Kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. J Biol Chem 285:35455–35461
Antoku S, Mayer BJ (2009) Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 122:4228–4238
Arold ST, Ulmer TS, Mulherni TD, Werner JM, Ladbury JE, Campbell ID, Noble MEM (2001) The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases. J Biol Chem 276:17199–17205
Banks P, Franks NP, Dickinson R (2010) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112:614–622
Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O, Balbo A, Yamaguchi H, Houtman JCD, Appella E, Schuck P, Samelson LE (2010) Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 29:2315–2328
Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275:38494–38499
Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H (2005) Structural characterization of Lyn-SH3 domain in complex with a herpes viral protein reveals an extended recognition motif that enhances binding affinity. Prot Sci 14:2487–2498
Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141
Broome MA, Hunter T (1997) The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 14:17–34
Chandra BR, Gowthaman R, Akhouri RR, Gupta D, Sharma A (2004) Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis. Protein Eng Des Sel 17:175–182
Chothia C, Janin J (1981) Relative orientation of close-packed,8-pleated sheets in proteins. Proc Natl Acad Sci USA 78:4146–4150
Clark SG, Stern MJ, Horvitz HR (1992) C. Elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344
Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005) The crystal structure of a C-Src complex in an active conformation suggests possible steps in C-Src activation. Structure 13:861–871
Dai Z, Pendergast AM (1995) Abi2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582
Dalgarno DC, Botfield MC, Rickles RJ (1998) SH3 domains and drug design: ligands, structure, and biological function. John Wiley & Sons, New York
Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571
Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD (2002) Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and aCrk-derived phosphopeptide. Proc Natl Acad Sci USA 99:14053–14058
Du Y, BC Bock, Schachter KA, Chao M, Gallo KA (2005) CDC42 Induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 280:42984–42993
Ehlers MD (2002) Molecular morphogens for dendritic spines. Trends Neurosci 25:64–67
Falzone CJ, Kao Y-H, Zhao J, Bryant DA, Lecomte JTJ (1994) Three-dimensional solution structure of PsaE from the Cyanobacterium synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33:6052–6062
Fazi B, Jamie M, Cope TV, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, Drubin DG, Wilmanns M, Cesareni G, Castagnoli L (2002) Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1. J Biol Chem 277:5290–5298
Feller SM, Lewitzky M (2006) Potential disease targets for drugs that disrupt protein-protein interactions of Grb2 and Crk family adaptors. Curr Pharmacol Des 12:529–548
Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266:1241–1247
Feng S, Kasahara C, Rickles RJ, Schreiber SL (1995) Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl Acad Sci USA 92:12408–12415
Foth BJ, Goedecke MC, Soldati D (2005) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686
Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K (2006) Functional characterization of the N-terminal region of myosin-2. J Biol Chem 281:36102–36109
Galisteo ML, Yang Y, Ureña J, Schlessinger J (2006) Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA 103:9796–9801
Gaul BS, Harrison ML, Geahlen RL, Burton RA, Post CB (2000) Substrate recognition by the Lyn protein-tyrosine kinase. J Biol Chem 275:16174–16182
Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8:997–1004
Gmeiner WH, Horita DA (2001) Implications of SH3 domain structure and dynamics for protein regulation and drug design. Cell Biochem Biophys 35:127–140
Gorina S, Pavletich NP (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274:1001–1005
Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273:13217–13222
Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC, Sato M, Bader JS, Lash AE, Minna JD, Pandey A, Varmus HE (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA 105:14112–14117
Harkiolaki M, Lewitzky M, Gilbert RJC, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moare I, Feller SM (2003) Structural basis for SH3 domain-mediated high affinity binding between Mona/Gads and SLP-76. EMBO J 22:2571–2582
Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Gyorgyi A-G, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci USA 99:12645–12650
Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA (1998) Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol 278:253–265
Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282
Jackson P, Baltimore D (1989) N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-Abl. EMBO J 8:449–456
Janz JM, Sakmar TP, Min KC (2007) A novel interaction between atrophin-interacting protein 4 and p21-activated kinase-interactive exchange factor is mediated by an SH3 domain. J Biol Chem 28:28893–28903
Jefferson JJ, Ciatto C, Shapiro L, Liem RKH (2007) Structural analysis of the plakin domain of bullous pemphigoid Antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol 366:244–257
Jiang M, Axe T, Holgate R, Rubbi CP, Okorokov AL, Mee T, Milner J (2001) P53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20:5449–5458
Jones RJ, Brunton VG, Frame MC (2000) Adhesion-linked kinases in cancer; emphasis on Src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 36:1595–1606
Kadaveru K, Vyas J, Schiller MR (2009) Viral infection and human disease—insights from minimotifs. Front Biosci 13:6455–6471
Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13P. EMBO J 21:4268–4276
Kaneko T, Shawn LL, Li SC (2008) The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952
Kang YS, Kim W, Huh YH, Bae J, Kim JS, Song WK (2011) P130Cas attenuates epidermal growth factor (EGF) receptor internalization by modulating EGF-triggered dynamin phosphorylation. PloSOne 6:e20125
Kapeller R, Prasad KVS, Janssen O, Hou W, Schaffhausen BS, Rudd CE, Cantley LC (1994) Identification of Two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 269:1927–1933
Kardinal C, Posern G, Zheng J, Knudsen BS, Moarefi I, Feller SM (1999) Rational development of cell penetrating high affinity SH3 domain binding peptides that selectively disrupt the signal transduction of Crk family adapters. Ann N Y Acad Sci USA 886:289–292
Kato J, TakejaT GC, Iba H, Levy JB, Hanafusa H (1986) Amino acid substitutions sufficient to convert the nontransforming p60csrc protein to a transforming protein. Mol Cell Biol 6:4155–4160
Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241
Kesti T, Ruppelt A, Wang JH, Liss M, Wagner R, Tasken K, Saksela K (2007) Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3epsilon. J Immunol 179:878–885
Kiehart DP, Franke JD, Chee MK, Montague RA, T-l C, Roote J, Ashburner M (2004) Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes Fly myosin VIIA. Genetics 168:1337–1352
Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F (2007) Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Oncogene 14:503–510
Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674
Kristensen O, Guenat S, Dar I, Allaman-Pillet N, Abderrahmani A, Ferdaoussi M, Roduit R, Maurer F, Beckmann JS, Kastrup JS, Gajhede M, Bonny C (2006) A unique set of SH3–SH3 interactions controls IB1 homodimerization. EMBO J 25:785–797
Kurochkina N (2010) Helix-helix interactions and their impact on protein motifs and assemblies. J Theor Biol 264:585–592
Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Crystal structure of the conserved core of HIV-1 NEF complexed with a SRC family SH3 domain. Cell 85:931–942
Levaot N, Simoncic PD, Dimitriou JD, Scotter A, La Rose J, Ng AHM, Willett TL, Wang CJ, Janmohamed S, Grynpas M, Reichenberger E, Rottapel R (2011) 3BP2-Deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. J Clin Invest 121:3244–3257
Lim WA, Richards FM, Fox RO (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372:375–379
Lim DC, Cooke BM, Doerig C, Saeij JPJ (2011) Toxoplasma and plasmodium protein kinases: roles in invasion and host cell remodeling. Int J Parasitol 42:21–32
Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the nterminal extension of the essential light chain in class II myosins. J Mol Biol 37:902–913
Maignan S, Guilloteau JP, Fromage N, Arnoux B, Becquart J, Ducruix A (1995) Crystal structure of the mammalian Grb2 adaptor. Science 268:291–293
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934
Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263
Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275
Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A (2008) The post-rigor structure of myosin VI and implications for the recovery stroke. EMBO J 27:244–252
Moncalián G, Cárdenes N, Deribe YL, Spínola-Amilibia M, Dikic I, Bravo J (2006) Atypical polyproline recognition by the CMS N-terminal Src homology 3 domain. J Biol Chem 281:38845–38853
Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A, Cesareni G, Di Fiore PP (1999) A novel peptide-SH3 interaction. EMBO J 18:5300–5309
Moore CJ, Winder SJ (2010) Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell communication and signaling 8:3–15
Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99:3801–3810
Muralidharan V, Dutta K, Cho J, Vila-Perello M, Raleigh DP, Cowburn D, Muir TW (2006) Solution structure and folding characteristics of the C- terminal SH3 domain of c-Crk-II. Biochemistry 45:8874–8884
Musacchio A (2002) How SH3 domains recognize proline. Adv Protein Chem 61:211–268
Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A (2006) New approaches to high-throughput structure characterization of SH3 complexes: the example of myosin-3 and myosin-5 SH3 domains from S. cerevisiae. Protein Sci 4:795–807, 2006
Nam HJ, Haser WG, Roberts TM, Frederick CA (1996) Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Structure 4:1105–1114
Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR (2006) Molecular basis for regulation of Src by the docking protein p130Cas. J Mol Recognit 19:30–38
Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366
Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092
Nishida M, Nagata K, Hachimory Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F (2001) Novel recognition mode between VAV and GRB2 SH3 domains. EMBO J 20:2995–3007
Noble MEM, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK (1993) Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J 12:2617–2624
Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxylterminal Src kinase, Csk. J Biol Chem 277:14351–14354
Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N et al (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp 60c-src complexes, and PI3-kinase. Cell 65:91–104
Owen DJ, Wigge P, Vallis Y, Moore JDA, Evans PR, McMahon HT (1998) Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J 17:5273–5285
Park H, Wahl MI, Afar DEH, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet J-P, Witte ON (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4:515–525
Pauling L, Corey RB (1951) The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci USA 37:272–281
Proulx-Bonneau S, Guezguez A, Annabi B (2011) A concerted HIF-1a/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PloSOne 6:e21511–e21520
Queval CJ, Nicolas V, Beau I (2011) Role of Src kinases in mobilization of glycosylphosphatidylinositol-anchored decay-accelerating factor by Dr fimbria-positive adhering bacteria. Infect Immun 79:2519–2534
Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58
Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JF, Fiser A, Birge RB (2005) Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3domain. Oncogene 24:8187–8189
Rudolph MG, Wittinghofer A, Vetter IR (1999) Nucleotide binding to the G12V-mutant of CDC42 investigated by X-ray diffraction and fluorescence spectroscopy: Two different nucleotide states in one crystal. Protein Sci 8:778–787
Sarkar P, Saleh T, Tzeng S-R, Birge RB, Kalodimos CG (2011) Structural basis for regulation of the Crk signaling protein by a proline switch. Nature Chem Biol 7:51–57
Sato M, Maruoka M, Yokota N, Kuwano M, Matsui A, Inada M, Ogawa T, Ishida-Kitagawa N, Takeya T (2011) Identification and functional analysis of a new phosphorylation site (Y398) in the SH3 domain of Abi-1. FEBS Lett 585:834–840
Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS (1992) Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 12:1835–1845
Shawn SCL (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653
Sheng M, Kim F (2000) The shank family of scaffold proteins. J Cell Sci 113:1851–1856
Shi X, Opi S, Lugar A, Restouin A, Coursindel T, Parrot I, Perez J, Madore E, Zimmermann P, Corbeil J, Huang M, Arold ST, Collette Y, Morelli X (2010) Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Biochem J 431:93–102
Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958
Smithgall TE (1995) SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 34:125–132
Sriram G, Reichman C, Tunceroglu A, Kausha N, Saleh T, Machida K, Mayer B, Ge Q, Li J, Hornbeck P, Kalodimos CG, Birge RB (2011) Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene 30:4645–4655
Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL (1988) Sequence similarity of phospholipase C with the non-catalytic region of Src. Nature 332:269–272
Takaku T, Ogura K, Kumeta H, Yoshida N, Inagaki F (2010) Solution structure of a novel CDC42 binding module of Bem1 and its interaction with Ste20 and CDC42. J Biol Chem 285:19346–19353
Tian L, Chen L, McClafferty H, Sailer CA, Ruth P, Knaus HG, Shipston MJ (2006) A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20:2588–2590
Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324
Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K et al (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700
Vidal M, Gigoux V, Garbay C (2001) SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 40:175–186
Wang Q, Deloia MA, Kang Y, Litchke C, Zhang N, Titus MA, Walters KJ (2007) The SH3 domain of a M7 interacts with its C-terminal proline-rich region. Protein Sci 16:189–196
Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98:4361–4366
Whisstock JC, Lesk AM (1999) SH3domains in prokaryotes. Trends Biochem Sci 24:32–33
Witucki LA, Huang X, Shah K, Liu Y, Kyin S, Eck MJ, Shokat KM (2002) Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chem Biol 9:25–33
Wu L, Pan L, Wei Z, Zhang M (2011) Structure of MyTH-FERM domains in myosin VIIa tail bound to cargo. Science 331:757–760
Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L (2008) Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. Biochim Biophys Acta 1783:737–747
Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase C-Src. Nature 385:595–602
Yamada S, Yanamoto S, Kawasaki G, Rokutanda S, Yonezawa H, Kawakita A, Nemoto TK (2011) Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett 303:84–91
Yamaguchi H, Hendrickson WA (1996) Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384:484–489
Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi A-G, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564
Yao B, Zhang J, Dai H, Sun J, Jiao Y, Tang Y, Wu J, Shi Y (2007) Solution structure of the second SH3 domain of human CMS and a newly identified binding site at the C-terminus of c-Cbl. Biochim Biophys Acta 177:35–43
Zhang JS, Koenig A, Young C, Billadeau DD (2011) GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Mol Biol Cell 22:2119–2130
Conflict of interest
None.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kurochkina, N., Guha, U. SH3 domains: modules of protein–protein interactions. Biophys Rev 5, 29–39 (2013). https://doi.org/10.1007/s12551-012-0081-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-012-0081-z