Skip to main content
Log in

SH3 domains: modules of protein–protein interactions

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Ack-1:

Activated CDC42-associated kinase

Csk:

Carboxyl-terminal Src kinase

Fyn:

FGR and yes-related novel kinase

Hck:

Hematopoetic cell kinase

IB1:

Islet brain 1

PEP:

Proline-enriched phosphatase

PEST:

Proline/glutamic acid/serine/threonine-rich domain

PTK:

Protein tyrosine kinase

SH3:

Src homology 3

References

  • Akiva E, Friedlander G, Itzhaki Z, Margalit H (2012) A dynamic view of domain-motif interactions. PloS Comp Biol 8:e1002341

    Article  CAS  Google Scholar 

  • Alvarado JJ, Betts L, Moroco JA, Smithgall TE, Yeh JI (2010) Crystal structure of the Src family Kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism. J Biol Chem 285:35455–35461

    Article  PubMed  CAS  Google Scholar 

  • Antoku S, Mayer BJ (2009) Distinct roles for Crk adaptor isoforms in actin reorganization induced by extracellular signals. J Cell Sci 122:4228–4238

    Article  PubMed  CAS  Google Scholar 

  • Arold ST, Ulmer TS, Mulherni TD, Werner JM, Ladbury JE, Campbell ID, Noble MEM (2001) The role of the Src homology 3-Src homology 2 interface in the regulation of Src kinases. J Biol Chem 276:17199–17205

    Article  PubMed  CAS  Google Scholar 

  • Banks P, Franks NP, Dickinson R (2010) Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology 112:614–622

    Article  PubMed  CAS  Google Scholar 

  • Barda-Saad M, Shirasu N, Pauker MH, Hassan N, Perl O, Balbo A, Yamaguchi H, Houtman JCD, Appella E, Schuck P, Samelson LE (2010) Cooperative interactions at the SLP-76 complex are critical for actin polymerization. EMBO J 29:2315–2328

    Article  PubMed  CAS  Google Scholar 

  • Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275:38494–38499

    Article  PubMed  CAS  Google Scholar 

  • Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H (2005) Structural characterization of Lyn-SH3 domain in complex with a herpes viral protein reveals an extended recognition motif that enhances binding affinity. Prot Sci 14:2487–2498

    Article  CAS  Google Scholar 

  • Bilwes AM, Alex LA, Crane BR, Simon MI (1999) Structure of CheA, a signal-transducing histidine kinase. Cell 96:131–141

    Article  PubMed  CAS  Google Scholar 

  • Broome MA, Hunter T (1997) The PDGF receptor phosphorylates Tyr 138 in the c-Src SH3 domain in vivo reducing peptide ligand binding. Oncogene 14:17–34

    Article  PubMed  CAS  Google Scholar 

  • Chandra BR, Gowthaman R, Akhouri RR, Gupta D, Sharma A (2004) Distribution of proline-rich (PxxP) motifs in distinct proteomes: functional and therapeutic implications for malaria and tuberculosis. Protein Eng Des Sel 17:175–182

    Article  CAS  Google Scholar 

  • Chothia C, Janin J (1981) Relative orientation of close-packed,8-pleated sheets in proteins. Proc Natl Acad Sci USA 78:4146–4150

    Article  PubMed  CAS  Google Scholar 

  • Clark SG, Stern MJ, Horvitz HR (1992) C. Elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356:340–344

    Article  PubMed  CAS  Google Scholar 

  • Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T (2005) The crystal structure of a C-Src complex in an active conformation suggests possible steps in C-Src activation. Structure 13:861–871

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Pendergast AM (1995) Abi2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582

    Article  PubMed  CAS  Google Scholar 

  • Dalgarno DC, Botfield MC, Rickles RJ (1998) SH3 domains and drug design: ligands, structure, and biological function. John Wiley & Sons, New York

    Google Scholar 

  • Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    Article  PubMed  CAS  Google Scholar 

  • Donaldson LW, Gish G, Pawson T, Kay LE, Forman-Kay JD (2002) Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and aCrk-derived phosphopeptide. Proc Natl Acad Sci USA 99:14053–14058

    Article  PubMed  CAS  Google Scholar 

  • Du Y, BC Bock, Schachter KA, Chao M, Gallo KA (2005) CDC42 Induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 280:42984–42993

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD (2002) Molecular morphogens for dendritic spines. Trends Neurosci 25:64–67

    Article  PubMed  CAS  Google Scholar 

  • Falzone CJ, Kao Y-H, Zhao J, Bryant DA, Lecomte JTJ (1994) Three-dimensional solution structure of PsaE from the Cyanobacterium synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33:6052–6062

    Article  PubMed  CAS  Google Scholar 

  • Fazi B, Jamie M, Cope TV, Douangamath A, Ferracuti S, Schirwitz K, Zucconi A, Drubin DG, Wilmanns M, Cesareni G, Castagnoli L (2002) Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1. J Biol Chem 277:5290–5298

    Article  PubMed  CAS  Google Scholar 

  • Feller SM, Lewitzky M (2006) Potential disease targets for drugs that disrupt protein-protein interactions of Grb2 and Crk family adaptors. Curr Pharmacol Des 12:529–548

    Article  CAS  Google Scholar 

  • Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266:1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Kasahara C, Rickles RJ, Schreiber SL (1995) Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl Acad Sci USA 92:12408–12415

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2005) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686

    Article  CAS  Google Scholar 

  • Fujita-Becker S, Tsiavaliaris G, Ohkura R, Shimada T, Manstein DJ, Sutoh K (2006) Functional characterization of the N-terminal region of myosin-2. J Biol Chem 281:36102–36109

    Article  PubMed  CAS  Google Scholar 

  • Galisteo ML, Yang Y, Ureña J, Schlessinger J (2006) Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci USA 103:9796–9801

    Article  PubMed  CAS  Google Scholar 

  • Gaul BS, Harrison ML, Geahlen RL, Burton RA, Post CB (2000) Substrate recognition by the Lyn protein-tyrosine kinase. J Biol Chem 275:16174–16182

    Article  PubMed  CAS  Google Scholar 

  • Ghose R, Shekhtman A, Goger MJ, Ji H, Cowburn D (2001) A novel, specific interaction involving the Csk SH3 domain and its natural ligand. Nat Struct Biol 8:997–1004

    Article  CAS  Google Scholar 

  • Gmeiner WH, Horita DA (2001) Implications of SH3 domain structure and dynamics for protein regulation and drug design. Cell Biochem Biophys 35:127–140

    Article  PubMed  CAS  Google Scholar 

  • Gorina S, Pavletich NP (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274:1001–1005

    Article  PubMed  CAS  Google Scholar 

  • Gregorieff A, Cloutier JF, Veillette A (1998) Sequence requirements for association of protein-tyrosine phosphatase PEP with the Src homology 3 domain of inhibitory tyrosine protein kinase p50(csk). J Biol Chem 273:13217–13222

    Article  PubMed  CAS  Google Scholar 

  • Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC, Sato M, Bader JS, Lash AE, Minna JD, Pandey A, Varmus HE (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA 105:14112–14117

    Article  PubMed  CAS  Google Scholar 

  • Harkiolaki M, Lewitzky M, Gilbert RJC, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moare I, Feller SM (2003) Structural basis for SH3 domain-mediated high affinity binding between Mona/Gads and SLP-76. EMBO J 22:2571–2582

    Article  PubMed  CAS  Google Scholar 

  • Himmel DM, Gourinath S, Reshetnikova L, Shen Y, Szent-Gyorgyi A-G, Cohen C (2002) Crystallographic findings on the internally uncoupled and near-rigor states of myosin: further insights into the mechanics of the motor. Proc Natl Acad Sci USA 99:12645–12650

    Article  PubMed  CAS  Google Scholar 

  • Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA (1998) Solution structure of the human Hck SH3 domain and identification of its ligand binding site. J Mol Biol 278:253–265

    Article  PubMed  CAS  Google Scholar 

  • Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282

    Article  PubMed  CAS  Google Scholar 

  • Jackson P, Baltimore D (1989) N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-Abl. EMBO J 8:449–456

    PubMed  CAS  Google Scholar 

  • Janz JM, Sakmar TP, Min KC (2007) A novel interaction between atrophin-interacting protein 4 and p21-activated kinase-interactive exchange factor is mediated by an SH3 domain. J Biol Chem 28:28893–28903

    Article  CAS  Google Scholar 

  • Jefferson JJ, Ciatto C, Shapiro L, Liem RKH (2007) Structural analysis of the plakin domain of bullous pemphigoid Antigen1 (BPAG1) suggests that plakins are members of the spectrin superfamily. J Mol Biol 366:244–257

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Axe T, Holgate R, Rubbi CP, Okorokov AL, Mee T, Milner J (2001) P53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20:5449–5458

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Brunton VG, Frame MC (2000) Adhesion-linked kinases in cancer; emphasis on Src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 36:1595–1606

    Article  PubMed  CAS  Google Scholar 

  • Kadaveru K, Vyas J, Schiller MR (2009) Viral infection and human disease—insights from minimotifs. Front Biosci 13:6455–6471

    Google Scholar 

  • Kami K, Takeya R, Sumimoto H, Kohda D (2002) Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67phox, Grb2 and Pex13P. EMBO J 21:4268–4276

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Shawn LL, Li SC (2008) The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952

    Google Scholar 

  • Kang YS, Kim W, Huh YH, Bae J, Kim JS, Song WK (2011) P130Cas attenuates epidermal growth factor (EGF) receptor internalization by modulating EGF-triggered dynamin phosphorylation. PloSOne 6:e20125

    CAS  Google Scholar 

  • Kapeller R, Prasad KVS, Janssen O, Hou W, Schaffhausen BS, Rudd CE, Cantley LC (1994) Identification of Two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 269:1927–1933

    PubMed  CAS  Google Scholar 

  • Kardinal C, Posern G, Zheng J, Knudsen BS, Moarefi I, Feller SM (1999) Rational development of cell penetrating high affinity SH3 domain binding peptides that selectively disrupt the signal transduction of Crk family adapters. Ann N Y Acad Sci USA 886:289–292

    Article  CAS  Google Scholar 

  • Kato J, TakejaT GC, Iba H, Levy JB, Hanafusa H (1986) Amino acid substitutions sufficient to convert the nontransforming p60csrc protein to a transforming protein. Mol Cell Biol 6:4155–4160

    PubMed  CAS  Google Scholar 

  • Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241

    PubMed  CAS  Google Scholar 

  • Kesti T, Ruppelt A, Wang JH, Liss M, Wagner R, Tasken K, Saksela K (2007) Reciprocal regulation of SH3 and SH2 domain binding via tyrosine phosphorylation of a common site in CD3epsilon. J Immunol 179:878–885

    PubMed  CAS  Google Scholar 

  • Kiehart DP, Franke JD, Chee MK, Montague RA, T-l C, Roote J, Ashburner M (2004) Drosophila crinkled, mutations of which disrupt morphogenesis and cause lethality, encodes Fly myosin VIIA. Genetics 168:1337–1352

    Article  PubMed  CAS  Google Scholar 

  • Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F (2007) Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Oncogene 14:503–510

    CAS  Google Scholar 

  • Koch CA, Anderson D, Moran MF, Ellis C, Pawson T (1991) SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 252:668–674

    Article  PubMed  CAS  Google Scholar 

  • Kristensen O, Guenat S, Dar I, Allaman-Pillet N, Abderrahmani A, Ferdaoussi M, Roduit R, Maurer F, Beckmann JS, Kastrup JS, Gajhede M, Bonny C (2006) A unique set of SH3–SH3 interactions controls IB1 homodimerization. EMBO J 25:785–797

    Article  PubMed  CAS  Google Scholar 

  • Kurochkina N (2010) Helix-helix interactions and their impact on protein motifs and assemblies. J Theor Biol 264:585–592

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J (1996) Crystal structure of the conserved core of HIV-1 NEF complexed with a SRC family SH3 domain. Cell 85:931–942

    Article  PubMed  CAS  Google Scholar 

  • Levaot N, Simoncic PD, Dimitriou JD, Scotter A, La Rose J, Ng AHM, Willett TL, Wang CJ, Janmohamed S, Grynpas M, Reichenberger E, Rottapel R (2011) 3BP2-Deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. J Clin Invest 121:3244–3257

    Article  PubMed  CAS  Google Scholar 

  • Lim WA, Richards FM, Fox RO (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372:375–379

    Article  PubMed  CAS  Google Scholar 

  • Lim DC, Cooke BM, Doerig C, Saeij JPJ (2011) Toxoplasma and plasmodium protein kinases: roles in invasion and host cell remodeling. Int J Parasitol 42:21–32

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Saraswat LD, Liu H, Volkmann N, Hanein D (2007) Evidence for an interaction between the SH3 domain and the nterminal extension of the essential light chain in class II myosins. J Mol Biol 37:902–913

    Article  CAS  Google Scholar 

  • Maignan S, Guilloteau JP, Fromage N, Arnoux B, Becquart J, Ducruix A (1995) Crystal structure of the mammalian Grb2 adaptor. Science 268:291–293

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ (2001) SH3 domains: complexity in moderation. J Cell Sci 114:1253–1263

    PubMed  CAS  Google Scholar 

  • Mayer BJ, Hamaguchi M, Hanafusa H (1988) A novel viral oncogene with structural similarity to phospholipase C. Nature 332:272–275

    Article  PubMed  CAS  Google Scholar 

  • Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A (2008) The post-rigor structure of myosin VI and implications for the recovery stroke. EMBO J 27:244–252

    Article  PubMed  CAS  Google Scholar 

  • Moncalián G, Cárdenes N, Deribe YL, Spínola-Amilibia M, Dikic I, Bravo J (2006) Atypical polyproline recognition by the CMS N-terminal Src homology 3 domain. J Biol Chem 281:38845–38853

    Article  PubMed  CAS  Google Scholar 

  • Mongiovi AM, Romano PR, Panni S, Mendoza M, Wong WT, Musacchio A, Cesareni G, Di Fiore PP (1999) A novel peptide-SH3 interaction. EMBO J 18:5300–5309

    Article  PubMed  CAS  Google Scholar 

  • Moore CJ, Winder SJ (2010) Dystroglycan versatility in cell adhesion: a tale of multiple motifs. Cell communication and signaling 8:3–15

    Article  PubMed  CAS  Google Scholar 

  • Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99:3801–3810

    Article  PubMed  CAS  Google Scholar 

  • Muralidharan V, Dutta K, Cho J, Vila-Perello M, Raleigh DP, Cowburn D, Muir TW (2006) Solution structure and folding characteristics of the C- terminal SH3 domain of c-Crk-II. Biochemistry 45:8874–8884

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A (2002) How SH3 domains recognize proline. Adv Protein Chem 61:211–268

    Article  PubMed  Google Scholar 

  • Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A (2006) New approaches to high-throughput structure characterization of SH3 complexes: the example of myosin-3 and myosin-5 SH3 domains from S. cerevisiae. Protein Sci 4:795–807, 2006

    Article  CAS  Google Scholar 

  • Nam HJ, Haser WG, Roberts TM, Frederick CA (1996) Intramolecular interactions of the regulatory domains of the Bcr-Abl kinase reveal a novel control mechanism. Structure 4:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR (2006) Molecular basis for regulation of Src by the docking protein p130Cas. J Mol Recognit 19:30–38

    Article  PubMed  CAS  Google Scholar 

  • Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366

    Article  PubMed  CAS  Google Scholar 

  • Nguyen JT, Turck CW, Cohen FE, Zuckermann RN, Lim WA (1998) Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092

    Article  PubMed  CAS  Google Scholar 

  • Nishida M, Nagata K, Hachimory Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F (2001) Novel recognition mode between VAV and GRB2 SH3 domains. EMBO J 20:2995–3007

    Article  PubMed  CAS  Google Scholar 

  • Noble MEM, Musacchio A, Saraste M, Courtneidge SA, Wierenga RK (1993) Crystal structure of the SH3 domain in human Fyn; comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J 12:2617–2624

    PubMed  CAS  Google Scholar 

  • Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxylterminal Src kinase, Csk. J Biol Chem 277:14351–14354

    Article  PubMed  CAS  Google Scholar 

  • Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N et al (1991) Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp 60c-src complexes, and PI3-kinase. Cell 65:91–104

    Article  PubMed  CAS  Google Scholar 

  • Owen DJ, Wigge P, Vallis Y, Moore JDA, Evans PR, McMahon HT (1998) Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J 17:5273–5285

    Article  PubMed  CAS  Google Scholar 

  • Park H, Wahl MI, Afar DEH, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet J-P, Witte ON (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4:515–525

    Article  PubMed  CAS  Google Scholar 

  • Pauling L, Corey RB (1951) The structure of fibrous proteins of the collagen-gelatin group. Proc Natl Acad Sci USA 37:272–281

    Article  PubMed  CAS  Google Scholar 

  • Proulx-Bonneau S, Guezguez A, Annabi B (2011) A concerted HIF-1a/MT1-MMP signalling axis regulates the expression of the 3BP2 adaptor protein in hypoxic mesenchymal stromal cells. PloSOne 6:e21511–e21520

    CAS  Google Scholar 

  • Queval CJ, Nicolas V, Beau I (2011) Role of Src kinases in mobilization of glycosylphosphatidylinositol-anchored decay-accelerating factor by Dr fimbria-positive adhering bacteria. Infect Immun 79:2519–2534

    Article  PubMed  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  • Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JF, Fiser A, Birge RB (2005) Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3domain. Oncogene 24:8187–8189

    PubMed  CAS  Google Scholar 

  • Rudolph MG, Wittinghofer A, Vetter IR (1999) Nucleotide binding to the G12V-mutant of CDC42 investigated by X-ray diffraction and fluorescence spectroscopy: Two different nucleotide states in one crystal. Protein Sci 8:778–787

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Saleh T, Tzeng S-R, Birge RB, Kalodimos CG (2011) Structural basis for regulation of the Crk signaling protein by a proline switch. Nature Chem Biol 7:51–57

    Article  CAS  Google Scholar 

  • Sato M, Maruoka M, Yokota N, Kuwano M, Matsui A, Inada M, Ogawa T, Ishida-Kitagawa N, Takeya T (2011) Identification and functional analysis of a new phosphorylation site (Y398) in the SH3 domain of Abi-1. FEBS Lett 585:834–840

    Article  PubMed  CAS  Google Scholar 

  • Seidel-Dugan C, Meyer BE, Thomas SM, Brugge JS (1992) Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src. Mol Cell Biol 12:1835–1845

    PubMed  CAS  Google Scholar 

  • Shawn SCL (2005) Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem J 390:641–653

    Article  Google Scholar 

  • Sheng M, Kim F (2000) The shank family of scaffold proteins. J Cell Sci 113:1851–1856

    PubMed  CAS  Google Scholar 

  • Shi X, Opi S, Lugar A, Restouin A, Coursindel T, Parrot I, Perez J, Madore E, Zimmermann P, Corbeil J, Huang M, Arold ST, Collette Y, Morelli X (2010) Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X. Biochem J 431:93–102

    Article  PubMed  CAS  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  PubMed  CAS  Google Scholar 

  • Smithgall TE (1995) SH2 and SH3 domains: potential targets for anti-cancer drug design. J Pharmacol Toxicol Methods 34:125–132

    Article  PubMed  CAS  Google Scholar 

  • Sriram G, Reichman C, Tunceroglu A, Kausha N, Saleh T, Machida K, Mayer B, Ge Q, Li J, Hornbeck P, Kalodimos CG, Birge RB (2011) Phosphorylation of Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation. Oncogene 30:4645–4655

    Article  PubMed  CAS  Google Scholar 

  • Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL (1988) Sequence similarity of phospholipase C with the non-catalytic region of Src. Nature 332:269–272

    Article  PubMed  CAS  Google Scholar 

  • Takaku T, Ogura K, Kumeta H, Yoshida N, Inagaki F (2010) Solution structure of a novel CDC42 binding module of Bem1 and its interaction with Ste20 and CDC42. J Biol Chem 285:19346–19353

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Chen L, McClafferty H, Sailer CA, Ruth P, Knaus HG, Shipston MJ (2006) A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20:2588–2590

    Article  PubMed  CAS  Google Scholar 

  • Tong AH, Drees B, Nardelli G, Bader GD, Brannetti B, Castagnoli L, Evangelista M, Ferracuti S, Nelson B, Paoluzi S, Quondam M, Zucconi A, Hogue CW, Fields S, Boone C, Cesareni G (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K et al (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, Gigoux V, Garbay C (2001) SH2 and SH3 domains as targets for anti-proliferative agents. Crit Rev Oncol Hematol 40:175–186

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Deloia MA, Kang Y, Litchke C, Zhang N, Titus MA, Walters KJ (2007) The SH3 domain of a M7 interacts with its C-terminal proline-rich region. Protein Sci 16:189–196

    Article  PubMed  CAS  Google Scholar 

  • Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98:4361–4366

    Article  PubMed  CAS  Google Scholar 

  • Whisstock JC, Lesk AM (1999) SH3domains in prokaryotes. Trends Biochem Sci 24:32–33

    Article  Google Scholar 

  • Witucki LA, Huang X, Shah K, Liu Y, Kyin S, Eck MJ, Shokat KM (2002) Mutant tyrosine kinases with unnatural nucleotide specificity retain the structure and phospho-acceptor specificity of the wild-type enzyme. Chem Biol 9:25–33

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Pan L, Wei Z, Zhang M (2011) Structure of MyTH-FERM domains in myosin VIIa tail bound to cargo. Science 331:757–760

    Article  PubMed  CAS  Google Scholar 

  • Xiong X, Cui P, Hossain S, Xu R, Warner B, Guo X, An X, Debnath AK, Cowburn D, Kotula L (2008) Allosteric inhibition of the nonMyristoylated c-Abl tyrosine kinase by phosphopeptides derived from Abi1/Hssh3bp1. Biochim Biophys Acta 1783:737–747

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase C-Src. Nature 385:595–602

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Yanamoto S, Kawasaki G, Rokutanda S, Yonezawa H, Kawakita A, Nemoto TK (2011) Overexpression of CRKII increases migration and invasive potential in oral squamous cell carcinoma. Cancer Lett 303:84–91

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hendrickson WA (1996) Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384:484–489

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Gourinath S, Kovacs M, Nyitray L, Reutzel R, Himmel DM, O'Neall-Hennessey E, Reshetnikova L, Szent-Gyorgyi A-G, Brown JH, Cohen C (2007) Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15:553–564

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Zhang J, Dai H, Sun J, Jiao Y, Tang Y, Wu J, Shi Y (2007) Solution structure of the second SH3 domain of human CMS and a newly identified binding site at the C-terminus of c-Cbl. Biochim Biophys Acta 177:35–43

    Google Scholar 

  • Zhang JS, Koenig A, Young C, Billadeau DD (2011) GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Mol Biol Cell 22:2119–2130

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalya Kurochkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurochkina, N., Guha, U. SH3 domains: modules of protein–protein interactions. Biophys Rev 5, 29–39 (2013). https://doi.org/10.1007/s12551-012-0081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0081-z

Keywords

Navigation