Skip to main content

Advertisement

Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria

  • Published:
Journal of Microbiology

Abstract

TCRγδ+ T cells play a critical role in protecting the intestinal mucosa against pathogenic infection. In the absence of infection, TCRγδ+ T cell activation must be continuously regulated by T regulatory cells (Treg) to prevent the development of colitis. However, the activation of intestinal TCRγδ+ T cells under normal conditions has not been clearly resolved. In order to determine TCRγδ+ T cell activation in vivo, we designed an NF-κB based reporter system. Using the recombinant lentiviral method, we delivered the NF-κB reporter to isolated TCRγδ+ T cells, which were then adoptively transferred into normal mice. Our data indicate that the NF-κB activation level in TCRγδ+ T cells is higher in the intestinal intraepithelial layer than in the lamina propria region. In addition, the surface expression level of lymphocyte activation marker CD69 in TCRγδ+ T cells is also higher in the intestinal intraepithelial layer and this activation was reduced by Sulfatrim treatment which removes of commensal bacteria. Collectively, our data indicate that the TCRγδ+ T cell population attached to the intestinal lumen is constitutively activated even by normal commensal bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TCR:

t cell receptor

APC:

antigen presenting cell

Treg:

regulatory T cell

IEL:

intraepithelial lymphocyte

LPL:

lamina propria lymphocyte

LTR:

long terminal repeat

References

  • Allison, J.P. and Havran, W.L. 1991. The immunobiology of T cells with invariant gamma delta antigen receptors. Ann. Rev. Immunol. 9, 679–705.

    Article  CAS  Google Scholar 

  • Bonneville, M., O’Brien, R.L., and Born, W.K. 2010. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478.

    Article  PubMed  CAS  Google Scholar 

  • Capone, M., Hockett, R.D., Jr., and Zlotnik, A. 1998. Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc. Natl. Acad. Sci. USA 95, 12522–12527.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Chou, K., Fuchs, E., Havran, W.L., and Boismenu, R. 2002. Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc. Natl. Acad. Sci. USA 99, 14338–14343.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y.H., Iwashima, M., Wettstein, D.A., Kaplan, K.B., Elliott, J.F., Born, W., and Davis, M.M. 1987. T-cell receptor delta gene rearrangements in early thymocytes. Nature 330, 722–727.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y.H. and Konigshofer, Y. 2007. Antigen recognition by gammadelta T cells. Immunol. Rev. 215, 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Garman, R.D., Doherty, P.J., and Raulet, D.H. 1986. Diversity, rearrangement, and expression of murine T cell gamma genes. Cell. 45, 733–742.

    Article  PubMed  CAS  Google Scholar 

  • Haas, W., Pereira, P., and Tonegawa, S. 1993. Gamma/delta cells. Ann. Rev. Immunol. 11, 637–685.

    Article  CAS  Google Scholar 

  • Hayday, A.C. 2009. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196.

    Article  PubMed  CAS  Google Scholar 

  • Hayday, A.C., Saito, H., Gillies, S.D., Kranz, D.M., Tanigawa, G., Eisen, H.N., and Tonegawa, S. 1985. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell. 40, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Hayday, A. and Tigelaar, R. 2003. Immunoregulation in the tissues by gammadelta T cells. Nat. Rev. Immunol. 3, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, M.S. and Ghosh, S. 2011. NF-kappaB in immunobiology. Cell Res. 21, 223–244.

    Article  PubMed  CAS  Google Scholar 

  • Holtmeier, W. and Kabelitz, D. 2005. Gammadelta T cells link innate and adaptive immune responses. Chem. Immunol. Allergy 86, 151–183.

    Article  PubMed  CAS  Google Scholar 

  • Howe, C.J., LaHair, M.M., Maxwell, J.A., Lee, J.T., Robinson, P.J., Rodriguez-Mora, O., McCubrey, J.A., and Franklin, R.A. 2002. Participation of the calcium/calmodulin-dependent kinases in hydrogen peroxide-induced Ikappa B phosphorylation in human T lymphocytes. J. Biol. Chem. 277, 30469–30476.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki-Ohara, K., Chinen, T., Matsuzaki, G., Sasaki, A., Sakamoto, Y., Hiromatsu, K., Nakamura-Uchiyama, F., Nawa, Y., and Yoshimura, A. 2004. Mucosal T cells bearing TCRgammadelta play a protective role in intestinal inflammation. J. Immunol. 173, 1390–1398.

    PubMed  CAS  Google Scholar 

  • Ito, Y., Usui, T., Kobayashi, S., Iguchi-Hashimoto, M., Ito, H., Yoshitomi, H., Nakamura, T., Shimizu, M., Kawabata, D., Yukawa N., and et al. 2009. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum. 60, 2294–2303.

    Article  PubMed  CAS  Google Scholar 

  • Livak, F., Tourigny, M., Schatz, D.G., and Petrie, H.T. 1999. Characterization of TCR gene rearrangements during adult murine T cell development. J. Immunol. 162, 2575–2580.

    PubMed  CAS  Google Scholar 

  • Pardoll, D.M., Fowlkes, B.J., Lew, A.M., Maloy, W.L., Weston, M.A., Bluestone, J.A., Schwartz, R.H., Coligan, J.E., and Kruisbeek, A.M. 1988. Thymus-dependent and thymus-independent developmental pathways for peripheral T cell receptor-gamma delta-bearing lymphocytes. J. Immunol. 140, 4091–4096.

    PubMed  CAS  Google Scholar 

  • Park, S.G., Mathur, R., Long, M., Hosh, N., Hao, L., Hayden, M.S., and Ghosh, S. 2010. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33, 791–803.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.G., Schulze-Luehrman, J., Hayden, M.S., Hashimoto, N., Ogawa, W., Kasuga, M., and Ghosh, S. 2009. The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10, 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Sutton, C.E., Lalor, S.J., Sweeney, C.M., Brereton, C.F., Lavelle, E.C., and Mills, K.H. 2009. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Turchinovich, G. and Pennington, D.J. 2011. T cell receptor signalling in gammadelta cell development: strength isn’t everything. Trends Immunol. 32, 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Weigmann, B., Tubbe, I., Seidel, D., Nicolaev, A., Becker, C., and Neurath, M.F. 2007. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nature Protocols 2, 2307–2311.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, S., Tanaka, Y., Tsutsumi, S., Aburatani, H., Minato, N., and Ihara, S. 2005. Analysis of mechanism for human gammadelta T cell recognition of nonpeptide antigens. Biochem. Biophys. Res. Commun. 334, 349–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Gyoo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, S.P., Kang, JA. & Park, SG. Intestinal intraepithelial TCRγδ+ T cells are activated by normal commensal bacteria. J Microbiol. 50, 837–841 (2012). https://doi.org/10.1007/s12275-012-2468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-012-2468-8

Keywords