Skip to main content
Log in

Ligand-controlled electrochemiluminescence generation from CdSe/CdS/ZnS core/shell/shell quantum dots

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) with strong exciton confinement have manifested themselves as competitive light-emitting materials in electrochemiluminescence (ECL). However, cathodic ECL generation by these QDs requires the injection of electron and hole from solid electrode and electrogenerated radicals (for example SO4•−), which is inevitably influenced by not only the inorganic structure of QDs but also the organic ligands on the surface. In this work we aimed at studying the impact of surface organic ligands on ECL performance of CdSe/CdS/ZnS QDs. When changing the surface ligand from oleate to acetate, we phenomenologically observed the positive shift of ECL onset potential by ca. 200 mV and the increase of ECL intensity by ∼ 100 times, suggesting that a short ligand is more favorable for ECL generation. To further comprehend the ligand effect, we measured the charge injection kinetics using potential-modulated, time-resolved photoluminescence, and thin-layer spectroelectrochemistry techniques. The electron and hole injection into QDs were found to be accelerated by 2–20 times if shortening the ligand from oleate to acetate, confirming the significant impact of surface ligands on ECL performance of QDs. The study is expected to provide guidance on how to design surface functionalized QDs for specific applications such as ECL immunodiagnosis, photocatalysis, and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 1990, 23, 183–188.

    CAS  Google Scholar 

  2. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 277, 933–937.

    Google Scholar 

  3. Shu, Y. F.; Lin, X.; Qin, H. Y.; Hu, Z.; Jin, Y. Z.; Peng, X. G. Quantum dots for display applications. Angew. Chem., Int. Ed. 2020, 732, 22496–22507.

    Google Scholar 

  4. Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

    CAS  Google Scholar 

  5. Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

    CAS  PubMed  Google Scholar 

  6. Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z. Q.; Breen, C.; Steckel, J.; Bulovic, V.; Bawendi, M.; Coe-Sullivan, S. et al. High- efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 2013, 7, 407–412.

    CAS  Google Scholar 

  7. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, highperformance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    CAS  PubMed  Google Scholar 

  8. Yang, Z. W.; Gao, M. Y.; Wu, W. J.; Yang, X. Y.; Sun, X. W.; Zhang, J. H.; Wang, H. C.; Liu, R. S.; Han, C. Y.; Yang, H. E. S. et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today 2019, 24, 69–93.

    Google Scholar 

  9. Ipe, B. I.; Lehnig, M.; Niemeyer, C. M. On the generation of free radical species from quantum dots. Small 2005, 1, 706–709.

    CAS  PubMed  Google Scholar 

  10. Han, Z. J.; Qiu, F.; Eisenberg, R.; Holland, P. L.; Krauss, T. D. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 2012, 338, 1321–1324.

    CAS  PubMed  Google Scholar 

  11. Wu, H. L.; Li, X. B.; Tung, C. H.; Wu, L. Z. Semiconductor quantum dots: An emerging candidate for CO2 photoreduction. Adv. Mater. 2019, 31, 1900709.

    Google Scholar 

  12. Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 2010, 110, 6873–6890.

    CAS  PubMed  Google Scholar 

  13. Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum dots for next-generation photovoltaics. Mater. Today 2012, 15, 508–515.

    CAS  Google Scholar 

  14. Duan, L. P.; Hu, L.; Guan, X. W.; Lin, C. H.; Chu, D. W.; Huang, S. J.; Liu, X. G.; Yuan, J. Y.; Wu, T. Quantum dots for photovoltaics: A tale of two materials. Adv. Energy Mater. 2021, 11, 2100354.

    CAS  Google Scholar 

  15. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759–1762

    CAS  PubMed  Google Scholar 

  16. Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976

    CAS  PubMed  Google Scholar 

  17. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    CAS  PubMed  Google Scholar 

  19. Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 2005, 4, 826–831.

    CAS  PubMed  Google Scholar 

  20. Wang, J.; Jiang, C. X.; Jin, J. N.; Huang, L.; Yu, W. B.; Su, B.; Hu, J. Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angew. Chem., Int. Ed. 2021, 133, 13152–13159.

    Google Scholar 

  21. Martins, C. S. M.; LaGrow, A. P.; Prior, J. A. V. Quantum dots for cancer-related miRNA monitoring. ACS Sens. 2022, 7, 1269–1299.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, P.; Hou, X. D.; Xu, J. J.; Chen, H. Y. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: Bridging the valley between two worlds. Chem. Rev. 2014, 114, 11027–11059.

    CAS  PubMed  Google Scholar 

  23. Guo, W. L.; Ding, H.; Gu, C. Y.; Liu, Y. H.; Jiang, X. C.; Su, B.; Shao, Y. H. Potential-resolved multicolor electrochemiluminescence for multiplex immunoassay in a single sample. J. Am. Chem. Soc. 2018, 140, 15904–15915.

    CAS  PubMed  Google Scholar 

  24. Zhao, Y. R.; Bouffier, L.; Xu, G. B.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano)materials. Chem. Sci. 2022, 73, 2528–2550.

    Google Scholar 

  25. Wang, Y. F.; Ding, J. L.; Zhou, P.; Liu, J. L.; Qiao, Z. Y.; Yu, K.; Jiang, J.; Su, B. Electrochemiluminescence distance and reactivity of coreactants determine the sensitivity of bead-based immunoassays. Angew. Chem., Int. Ed. 2023, 62, e202216525.

    CAS  Google Scholar 

  26. Yang, X. R.; Hang, J. M.; Qu, W. Y.; Wang, Y. L.; Wang, L.; Zhou, P.; Ding, H.; Su, B.; Lei, J.; Guo, W. L. et al. Gold microbeads enabled proximity electrochemiluminescence for highly sensitive and size-encoded multiplex immunoassays. J. Am. Chem. Soc. 2023, 145, 16026–16036.

    CAS  PubMed  Google Scholar 

  27. Ding, Z. F.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297.

    CAS  PubMed  Google Scholar 

  28. Myung, N.; Ding, Z. F.; Bard, A. J. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett. 2002, 2, 1315–1319.

    CAS  Google Scholar 

  29. Myung, N.; Bae, Y.; Bard, A. J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett. 2003, 3, 1053–1055.

    CAS  Google Scholar 

  30. Bae, Y.; Myung, N.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett. 2004, 4, 1153–1161.

    CAS  Google Scholar 

  31. Sun, L. F.; Bao, L.; Hyun, B. R.; Bartnik, A. C.; Zhong, Y. W.; Reed, J. C.; Pang, D. W.; Abruña, H. D.; Malliaras, G. G.; Wise, F. W. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 2009, 9, 789–793.

    CAS  PubMed  Google Scholar 

  32. Liang, G. X.; Li, L. L.; Liu, H. Y.; Zhang, J. R.; Burda, C.; Zhu, J. J. Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence. Chem. Commun. 2010, 46, 2974–2976.

    CAS  Google Scholar 

  33. Cao, Z. Y.; Shu, Y. F.; Qin, H. Y.; Su, B.; Peng, X. G. Quantum dots with highly efficient, stable, and multicolor electrochemiluminescence. ACS Cent. Sci. 2020, 6, 1129–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao, Z. Y.; Li, C. Y.; Shu, Y. F.; Zhu, M. Y.; Su, B.; Qin, H. Y.; Peng, X. G. Unraveling mechanisms of highly efficient yet stable electrochemiluminescence from quantum dots. J. Am. Chem. Soc. 2023, 145, 26425–26434.

    CAS  PubMed  Google Scholar 

  35. Ding, J. L.; Zhou, P.; Su, B. Quantum efficiency of electrochemiluminescence generation by tris(2,2′- bipyridine)ruthenium(II) and tri-n-propylamine revisited from a kinetic reaction model. ChemElectroChem 2022, 9, e202200236.

    CAS  Google Scholar 

  36. Tagliazucchi, M.; Tice, D. B.; Sweeney, C. M.; Morris-Cohen, A. J.; Weiss, E. A. Ligand- controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. ACS Nano 2011, 5, 9907–9917.

    CAS  PubMed  Google Scholar 

  37. Ding, T. X.; Olshansky, J. H.; Leone, S. R.; Alivisatos, A. P. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 2015, 137, 2021–2029.

    CAS  PubMed  Google Scholar 

  38. Rosen, E. L.; Buonsanti, R.; Llordes, A.; Sawvel, A. M.; Milliron, D. J.; Helms, B. A. Exceptionally mild reactive stripping of native ligands from nanocrystal surfaces by using meerwein’s salt. Angew. Chem., Int. Ed. 2012, 51, 684–689.

    CAS  Google Scholar 

  39. Chang, C. M.; Orchard, K. L.; Martindale, B. C. M.; Reisner, E. Ligand removal from CdS quantum dots for enhanced photocatalytic H2 generation in pH neutral water. J. Mater. Chem.A 2016, 4, 2856–2862.

    CAS  Google Scholar 

  40. Bernt, C. M.; Burks, P. T.; DeMartino, A. W.; Pierri, A. E.; Levy, E. S.; Zigler, D. F.; Ford, P. C. Photocatalytic carbon disulfide production via charge transfer quenching of quantum dots. J. Am. Chem. Soc. 2014, 136, 2192–2195.

    CAS  PubMed  Google Scholar 

  41. Wang, W. T.; Kapur, A.; Ji, X.; Safi, M.; Palui, G.; Palomo, V.; Dawson, P. E.; Mattoussi, H. Photoligation of an amphiphilic polymer with mixed coordination provides compact and reactive quantum dots. J. Am. Chem. Soc. 2015, 137, 5438–5451.

    CAS  PubMed  Google Scholar 

  42. He, C.; Weinberg, D. J.; Nepomnyashchii, A. B.; Lian, S. C.; Weiss, E. A. Control of the redox activity of PbS quantum dots by tuning electrostatic interactions at the quantum dot/solvent interface. J. Am. Chem. Soc. 2016, 138, 8847–8854.

    CAS  PubMed  Google Scholar 

  43. He, C.; Nguyen, T. D.; Edme, K.; De La Cruz, M. O.; Weiss, E. A. Noncovalent control of the electrostatic potential of quantum dots through the formation of interfacial ion pairs. J. Am. Chem. Soc. 2017, 139, 10126–10132.

    CAS  PubMed  Google Scholar 

  44. Zhang, Z. Y.; Edme, K.; Lian, S. C.; Weiss, E. A. Enhancing the rate of quantum-dot-photocatalyzed carbon-carbon coupling by tuning the composition of the dot’s ligand shell. J. Am. Chem. Soc. 2017, 139, 4246–4249.

    CAS  PubMed  Google Scholar 

  45. Vokhmintcev, K. V.; Samokhvalov, P. S.; Nabiev, I. Charge transfer and separation in photoexcited quantum dot-based systems. Nano Today 2016, 11, 189–211.

    CAS  Google Scholar 

  46. Winkler, J. R.; Gray, H. B. Long- range electron tunneling. J. Am. Chem. Soc. 2014, 136, 2930–2939.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu, W. W.; Hou, X. Q.; Meng, Y. J.; Meng, R. Y.; Wang, Z. Y.; Qin, H. Y.; Peng, X. G.; Chen, X. W. Deciphering charging status, absolute quantum efficiency, and absorption cross section of multicarrier states in single colloidal quantum dots. Nano Lett. 2017, 17, 7487–7493.

    CAS  PubMed  Google Scholar 

  48. Jha, P. P.; Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 2009, 3, 1011–1015.

    CAS  PubMed  Google Scholar 

  49. Franceschetti, A.; Zunger, A. Optical transitions in charged CdSe quantum dots. Phys. Rev. B 2000, 62, R16287–R16290.

    CAS  Google Scholar 

  50. Hu, Z.; Liu, S. J.; Qin, H. Y.; Zhou, J. H.; Peng, X. G. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 2020, 142, 4254–4264.

    CAS  PubMed  Google Scholar 

  51. Yang, Y.; Qin, H. Y.; Jiang, M. W.; Lin, L.; Fu, T.; Dai, X. L.; Zhang, Z. X.; Niu, Y.; Cao, H. J.; Jin, Y. Z. et al. Entropic ligands for nanocrystals: From unexpected solution properties to outstanding processability. Nano Lett. 2016, 16, 2133–2138.

    CAS  PubMed  Google Scholar 

  52. Oh, W. D.; Dong, Z. L.; Lim, T. T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects. Appl. Catal.BEnviron. 2016, 194, 169–201.

    CAS  Google Scholar 

  53. Lee, J.; Von Gunten, U.; Kim, J. H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081.

    CAS  PubMed  Google Scholar 

  54. Liu, S.; Hassan, S. U.; Ding, H. J.; Li, S. Y.; Jin, F.; Miao, Z. Q.; Wang, X. X.; Li, H.; Zhao, C. Removal of sulfamethoxazole in water by electro-enhanced Co2+/peroxydisulfate system with activated carbon fiber-cathode. Chemosphere 2020, 245, 125644.

    CAS  PubMed  Google Scholar 

  55. Shao, H. X.; Chen, J.; Xu, J. H.; Liu, Y.; Dong, H. Y.; Qiao, J. L.; Guan, X. H. Naproxen as a turn-on chemiluminescent probe for realtime quantification of sulfate radicals. Environ. Sci. Technol. 2023, 57, 8818–8827.

    CAS  PubMed  Google Scholar 

  56. Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

    CAS  PubMed  Google Scholar 

  57. Hens, Z.; Martins, J. C. A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem. Mater. 2013, 25, 1211–1221.

    CAS  Google Scholar 

  58. Hartley, C. L.; Kessler, M. L.; Lassalle, C. Y. D.; Camp, A. M.; Dempsey, J. L. Effects of ligand shell composition on surface reduction in PbS quantum dots. Chem. Mater. 2021, 33, 8612–8622.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22125405 and 22074131). The authors also would like to thank Mrs. Fang Chen from the Chemistry Instrumentation Centre of Chemistry Department at Zhejiang University for technical assistance with SEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Su.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Cao, Z., Qin, H. et al. Ligand-controlled electrochemiluminescence generation from CdSe/CdS/ZnS core/shell/shell quantum dots. Nano Res. 17, 7776–7785 (2024). https://doi.org/10.1007/s12274-024-6707-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6707-1

Keywords

Navigation