Skip to main content

Advertisement

Targeting ROCK/LIMK/cofilin signaling pathway in cancer

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Rho-associated coiled-coil-containing protein kinase (ROCK)/Lin11, Isl-1 and Mec-3 kinase (LIMK)/cofilin-signaling cascades are stimulated by receptor tyrosine kinases, G protein-coupled receptors, integrins and its ligands, growth factors, hormones, fibronectin, collagen, and laminin. Activated signaling cascades can cause transit from normal cells to cancer cells by modulating actin/filament dynamics. In various cancers including breast, prostate, and colorectal cancers, high expression or activity of each cascade protein is significantly associated with poor survival rate of patients as well as aggressive metastasis. Silencing ROCK, LIMK, or cofilin can abrogate their activities and inhibit cancer cell growth, invasion, and metastasis. Therefore ROCK/LIMK/cofilin signaling proteins might be good candidates to develop cancer prevention strategies or therapeutics. Currently, netarsudil, a ROCK inhibitor, is only used in clinical patients for glaucoma or ocular hypertension, but not for cancer. In this review, we will discuss comprehensive ROCK/LIMK/cofilin signaling pathway in cancers and its inhibitors for developing cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe H, Kamai T, Hayashi K, Anzai N, Shirataki H, Mizuno T, Yamaguchi Y, Masuda A, Yuki H, Betsunoh H, Yashi M, Fukabori Y, Yoshida K (2014) The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells. BMC Cancer 14:412

    PubMed  PubMed Central  Google Scholar 

  • Aggelou H, Chadla P, Nikou S, Karteri S, Maroulis I, Kalofonos HP, Papadaki H, Bravou V (2018) LIMK/cofilin pathway and slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch 472:727–737

    PubMed  CAS  Google Scholar 

  • Alhopuro P, Sammalkorpi H, Niittymaki I, Bistrom M, Raitila A, Saharinen J, Nousiainen K, Lehtonen HJ, Heliovaara E, Puhakka J, Tuupanen S, Sousa S, Seruca R, Ferreira AM, Hofstra RM, Mecklin JP, Jarvinen H, Ristimaki A, Orntoft TF, Hautaniemi S, Arango D, Karhu A, Aaltonen LA (2012) Candidate driver genes in microsatellite-unstable colorectal cancer. Int J Cancer 130:1558–1566

    PubMed  CAS  Google Scholar 

  • Amin E, Dubey BN, Zhang SC, Gremer L, Dvorsky R, Moll JM, Taha MS, Nagel-Steger L, Piekorz RP, Somlyo AV, Ahmadian MR (2013) Rho-kinase: regulation, (dys)function, and inhibition. Biol Chem 394:1399–1410

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cascione M, De Matteis V, Toma CC, Pellegrino P, Leporatti S, Rinaldi R (2017) Morphomechanical and structural changes induced by ROCK inhibitor in breast cancer cells. Exp Cell Res 360:303–309

    PubMed  CAS  Google Scholar 

  • Chang CY, Leu JD, Lee YJ (2015) The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 16:4095–4120

    PubMed  PubMed Central  CAS  Google Scholar 

  • Charles MD, Brookfield JL, Ekwuru TC, Stockley M, Dunn J, Riddick M, Hammonds T, Trivier E, Greenland G, Wong AC, Cheasty A, Boyd S, Crighton D, Olson MF (2015) Discovery, development, and SAR of aminothiazoles as LIMK inhibitors with cellular anti-invasive properties. J Med Chem 58:8309–8313

    PubMed  CAS  Google Scholar 

  • Collazo J, Zhu B, Larkin S, Martin SK, Pu H, Horbinski C, Koochekpour S, Kyprianou N (2014) Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res 74:2362–2373

    PubMed  PubMed Central  CAS  Google Scholar 

  • Desmarais V, Ghosh M, Eddy R, Condeelis J (2005) Cofilin takes the lead. J Cell Sci 118:19–26

    PubMed  CAS  Google Scholar 

  • Feng Y, Lograsso PV (2014) Rho kinase inhibitors: a patent review (2012–2013). Expert Opin Ther Pat 24:295–307

    PubMed  CAS  Google Scholar 

  • Gai WT, Yu DP, Wang XS, Wang PT (2016) Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. Oncol Lett 12:2880–2885

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goyal P, Pandey D, Siess W (2006) Phosphorylation-dependent regulation of unique nuclear and nucleolar localization signals of LIM kinase 2 in endothelial cells. J Biol Chem 281:25223–25230

    PubMed  CAS  Google Scholar 

  • Guerra FS, Oliveira RG, Fraga CAM, Mermelstein CDS, Fernandes PD (2017) ROCK inhibition with Fasudil induces beta-catenin nuclear translocation and inhibits cell migration of MDA-MB 231 human breast cancer cells. Sci Rep 7:13723

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Sun D, Pan Q, Wen W, Chen Y, Xin X, Huang M, Ding J, Geng M (2014) JG6, a novel marine-derived oligosaccharide, suppresses breast cancer metastasis via binding to cofilin. Oncotarget 5:3568–3578

    PubMed  PubMed Central  Google Scholar 

  • Jiang L, Wen J, Luo W (2015) Rhoassociated kinase inhibitor, Y27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep 12:7526–7530

    PubMed  CAS  Google Scholar 

  • Johnson EO, Chang KH, Ghosh S, Venkatesh C, Giger K, Low PS, Shah K (2012) LIMK2 is a crucial regulator and effector of Aurora-A-kinase-mediated malignancy. J Cell Sci 125:1204–1216

    PubMed  CAS  Google Scholar 

  • Kalender ME, Demiryurek S, Oztuzcu S, Kizilyer A, Demiryurek AT, Sevinc A, Dikilitas M, Yildiz R, Camci C (2010) Association between the Thr431Asn polymorphism of the ROCK2 gene and risk of developing metastases of breast cancer. Oncol Res 18:583–591

    PubMed  Google Scholar 

  • Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9:2632–2641

    PubMed  CAS  Google Scholar 

  • Kang CG, Han HJ, Lee HJ, Kim SH, Lee EO (2015) Rho-associated kinase signaling is required for osteopontin-induced cell invasion through inactivating cofilin in human non-small cell lung cancer cell lines. Bioorg Med Chem Lett 25:1956–1960

    PubMed  CAS  Google Scholar 

  • Kapoor P, Shen X (2014) Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol 24:238–246

    PubMed  CAS  Google Scholar 

  • Lane J, Martin TA, Watkins G, Mansel RE, Jiang WG (2008) The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int J Oncol 33:585–593

    PubMed  CAS  Google Scholar 

  • Li R, Doherty J, Antonipillai J, Chen S, Devlin M, Visser K, Baell J, Street I, Anderson RL, Bernard O (2013) LIM kinase inhibition reduces breast cancer growth and invasiveness but systemic inhibition does not reduce metastasis in mice. Clin Exp Metastasis 30:483–495

    PubMed  CAS  Google Scholar 

  • Li Y, Li X, Liu KR, Zhang JN, Liu Y, Zhu Y (2015) Visfatin derived from ascites promotes ovarian cancer cell migration through Rho/ROCK signaling-mediated actin polymerization. Eur J Cancer Prev 24:231–239

    PubMed  CAS  Google Scholar 

  • Liao PH, Hsu HH, Chen TS, Chen MC, Day CH, Tu CC, Lin YM, Tsai FJ, Kuo WW, Huang CY (2017) Phosphorylation of cofilin-1 by ERK confers HDAC inhibitor resistance in hepatocellular carcinoma cells via decreased ROS-mediated mitochondria injury. Oncogene 36:1978–1990

    PubMed  CAS  Google Scholar 

  • Liu X, Bi Y (2016) Y-27632 increases sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration. Med Sci Monit 22:3529–3534

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Goldstein RH, Scepansky EM, Rosenblatt M (2009) Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Res 69:8742–8751

    PubMed  CAS  Google Scholar 

  • Liu W, Zhang Q, Tang Q, Hu C, Huang J, Liu Y, Lu Y, Wang Q, Li G, Zhang R (2018) Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilininduced actin dynamics in HepG2 hepatoblastoma cells. Oncol Rep 40:2298–2306

    PubMed  CAS  Google Scholar 

  • Lochhead PA, Wickman G, Mezna M, Olson MF (2010) Activating ROCK1 somatic mutations in human cancer. Oncogene 29:2591–2598

    PubMed  CAS  Google Scholar 

  • Maimaiti Y, Tan J, Liu Z, Guo Y, Yan Y, Nie X, Huang B, Zhou J, Huang T (2017) Overexpression of cofilin correlates with poor survival in breast cancer: a tissue microarray analysis. Oncol Lett 14:2288–2294

    PubMed  PubMed Central  CAS  Google Scholar 

  • Manetti F (2012) LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med Res Rev 32:968–998

    PubMed  CAS  Google Scholar 

  • Mardilovich K, Baugh M, Crighton D, Kowalczyk D, Gabrielsen M, Munro J, Croft DR, Lourenco F, James D, Kalna G, Mcgarry L, Rath O, Shanks E, Garnett MJ, Mcdermott U, Brookfield J, Charles M, Hammonds T, Olson MF (2015a) LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation. Oncotarget 6:38469–38486

    PubMed  PubMed Central  Google Scholar 

  • Mardilovich K, Gabrielsen M, Mcgarry L, Orange C, Patel R, Shanks E, Edwards J, Olson MF (2015b) Elevated LIM kinase 1 in nonmetastatic prostate cancer reflects its role in facilitating androgen receptor nuclear translocation. Mol Cancer Ther 14:246–258

    PubMed  CAS  Google Scholar 

  • Matsuoka T, Yashiro M (2014) Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol 20:13756–13766

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, Macdonald JF, Wang JY, Falls DL, Jia Z (2002) Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 35:121–133

    PubMed  CAS  Google Scholar 

  • Miyamoto C, Maehata Y, Ozawa S, Ikoma T, Kubota E, Izukuri K, Kato Y, Hata R, Lee MC (2012) Fasudil suppresses fibrosarcoma growth by stimulating secretion of the chemokine CXCL14/BRAK. J Pharmacol Sci 120:241–249

    PubMed  CAS  Google Scholar 

  • Morgan-Fisher M, Wewer UM, Yoneda A (2013) Regulation of ROCK activity in cancer. J Histochem Cytochem 61:185–198

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mu D, Zhou G, Li J, Su B, Guo H (2018) Ursolic acid activates the apoptosis of prostate cancer via ROCK/PTEN mediated mitochondrial translocation of cofilin-1. Oncol Lett 15:3202–3206

    PubMed  Google Scholar 

  • Ohashi K, Sampei K, Nakagawa M, Uchiumi N, Amanuma T, Aiba S, Oikawa M, Mizuno K (2014) Damnacanthal, an effective inhibitor of LIM-kinase, inhibits cell migration and invasion. Mol Biol Cell 25:828–840

    PubMed  PubMed Central  Google Scholar 

  • Park JB, Agnihotri S, Golbourn B, Bertrand KC, Luck A, Sabha N, Smith CA, Byron S, Zadeh G, Croul S, Berens M, Rutka JT (2014) Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway. Oncotarget 5:9382–9395

    PubMed  PubMed Central  Google Scholar 

  • Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, De Lanerolle P, Hozak P, Grummt I (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1172

    PubMed  CAS  Google Scholar 

  • Po’uha ST, Shum MS, Goebel A, Bernard O, Kavallaris M (2010) LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene 29:597–607

    PubMed  Google Scholar 

  • Prudent R, Vassal-Stermann E, Nguyen CH, Pillet C, Martinez A, Prunier C, Barette C, Soleilhac E, Filhol O, Beghin A, Valdameri G, Honore S, Aci-Seche S, Grierson D, Antonipillai J, Li R, Di Pietro A, Dumontet C, Braguer D, Florent JC, Knapp S, Bernard O, Lafanechere L (2012) Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth. Cancer Res 72:4429–4439

    PubMed  CAS  Google Scholar 

  • Prudnikova TY, Rawat SJ, Chernoff J (2015) Molecular pathways: targeting the kinase effectors of RHO-family GTPases. Clin Cancer Res 21:24–29

    PubMed  CAS  Google Scholar 

  • Prunier C, Josserand V, Vollaire J, Beerling E, Petropoulos C, Destaing O, Montemagno C, Hurbin A, Prudent R, De Koning L, Kapur R, Cohen PA, Albiges-Rizo C, Coll JL, Van Rheenen J, Billaud M, Lafanechere L (2016) LIM kinase inhibitor Pyr1 reduces the growth and metastatic load of breast cancers. Cancer Res 76:3541–3552

    PubMed  CAS  Google Scholar 

  • Prunier C, Prudent R, Kapur R, Sadoul K, Lafanechere L (2017) LIM kinases: cofilin and beyond. Oncotarget 8:41749–41763

    PubMed  PubMed Central  Google Scholar 

  • Rak R, Haklai R, Elad-Tzfadia G, Wolfson HJ, Carmeli S, Kloog Y (2014) Novel LIMK2 inhibitor blocks Panc-1 tumor growth in a mouse xenograft model. Oncoscience 1:39–48

    PubMed  PubMed Central  Google Scholar 

  • Rath N, Olson MF (2012) Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 13:900–908

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sari-Hassoun M, Clement MJ, Hamdi I, Bollot G, Bauvais C, Joshi V, Toma F, Burgo A, Cailleret M, Rosales-Hernandez MC, Macias Perez ME, Chabane-Sari D, Curmi PA (2016) Cucurbitacin I elicits the formation of actin/phospho-myosin II co-aggregates by stimulation of the RhoA/ROCK pathway and inhibition of LIM-kinase. Biochem Pharmacol 102:45–63

    PubMed  CAS  Google Scholar 

  • Scott RW, Olson MF (2007) LIM kinases: function, regulation and association with human disease. J Mol Med (Berl) 85:555–568

    CAS  Google Scholar 

  • Shoji K, Ohashi K, Sampei K, Oikawa M, Mizuno K (2012) Cytochalasin D acts as an inhibitor of the actin-cofilin interaction. Biochem Biophys Res Commun 424:52–57

    PubMed  CAS  Google Scholar 

  • Song H, Wang Y, Li L, Sui H, Wang P, Wang F (2018) Cucurbitacin E inhibits proliferation and migration of intestinal epithelial cells via activating cofilin. Front Physiol 9:1090

    PubMed  PubMed Central  Google Scholar 

  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24:473–486

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi H, Koshimizu U, Miyazaki J, Nakamura T (2002) Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev Biol 241:259–272

    PubMed  CAS  Google Scholar 

  • Takeda H, Okada M, Suzuki S, Kuramoto K, Sakaki H, Watarai H, Sanomachi T, Seino S, Yoshioka T, Kitanaka C (2016) Rho-associated protein kinase (ROCK) inhibitors inhibit survivin expression and sensitize pancreatic cancer stem cells to gemcitabine. Anticancer Res 36:6311–6318

    PubMed  CAS  Google Scholar 

  • Tang Y, He Y, Zhang P, Wang J, Fan C, Yang L, Xiong F, Zhang S, Gong Z, Nie S, Liao Q, Li X, Li X, Li Y, Li G, Zeng Z, Xiong W, Guo C (2018) LncRNAs regulate the cytoskeleton and related Rho/ROCK signaling in cancer metastasis. Mol Cancer 17:77

    PubMed  PubMed Central  Google Scholar 

  • Thompson JM, Nguyen QH, Singh M, Pavesic MW, Nesterenko I, Nelson LJ, Liao AC, Razorenova OV (2017) Rho-associated kinase 1 inhibition is synthetically lethal with von Hippel-Lindau deficiency in clear cell renal cell carcinoma. Oncogene 36:1080–1089

    PubMed  CAS  Google Scholar 

  • Van Rheenen J, Condeelis J, Glogauer M (2009) A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 122:305–311

    PubMed  PubMed Central  Google Scholar 

  • Vennin C, Chin VT, Warren SC, Lucas MC, Herrmann D, Magenau A, Melenec P, Walters SN, Del Monte-Nieto G, Conway JR, Nobis M, Allam AH, Mccloy RA, Currey N, Pinese M, Boulghourjian A, Zaratzian A, Adam AA, Heu C, Nagrial AM, Chou A, Steinmann A, Drury A, Froio D, Giry-Laterriere M, Harris NL, Phan T, Jain R, Weninger W, Mcghee EJ, Whan R, Johns AL, Samra JS, Chantrill L, Gill AJ, Kohonen-Corish M, Harvey RP, Biankin AV, Australian Pancreatic Cancer Genome I, Evans TR, Anderson KI, Grey ST, Ormandy CJ, Gallego-Ortega D, Wang Y, Samuel MS, Sansom OJ, Burgess A, Cox TR, Morton JP, Pajic M, Timpson P (2017a) Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis. Sci Transl Med 9:384

    Google Scholar 

  • Vennin C, Rath N, Pajic M, Olson MF, Timpson P (2017b) Targeting ROCK activity to disrupt and prime pancreatic cancer for chemotherapy. Small GTPases 55:818–831

    Google Scholar 

  • Vogel CJ, Smit MA, Maddalo G, Possik PA, Sparidans RW, Van Der Burg SH, Verdegaal EM, Heck AJ, Samatar AA, Beijnen JH, Altelaar AF, Peeper DS (2015) Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res 28:307–317

    PubMed  CAS  Google Scholar 

  • Voorneveld PW, Kodach LL, Jacobs RJ, Liv N, Zonnevylle AC, Hoogenboom JP, Biemond I, Verspaget HW, Hommes DW, De Rooij K, Van Noesel CJ, Morreau H, Van Wezel T, Offerhaus GJ, Van Den Brink GR, Peppelenbosch MP, Ten Dijke P, Hardwick JC (2014) Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK. Gastroenterology 147(196–208):e13

    Google Scholar 

  • Wang Y, Kuramitsu Y, Kitagawa T, Baron B, Yoshino S, Maehara S, Maehara Y, Oka M, Nakamura K (2015) Cofilin-phosphatase slingshot-1L (SSH1L) is over-expressed in pancreatic cancer (PC) and contributes to tumor cell migration. Cancer Lett 360:171–176

    PubMed  CAS  Google Scholar 

  • Wang ZM, Yang DS, Liu J, Liu HB, Ye M, Zhang YF (2016) ROCK inhibitor Y-27632 inhibits the growth, migration, and invasion of Tca8113 and CAL-27 cells in tongue squamous cell carcinoma. Tumour Biol 37:3757–3764

    PubMed  CAS  Google Scholar 

  • Wang H, Gu H, Feng J, Qian Y, Yang L, Jin F, Wang X, Chen J, Shi Y, Lu S, Zhao M, Liu Y (2017) Celastrus orbiculatus extract suppresses the epithelial-mesenchymal transition by mediating cytoskeleton rearrangement via inhibition of the Cofilin 1 signaling pathway in human gastric cancer. Oncol Lett 14:2926–2932

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Yang C, Nie H, Qiu X, Zhang L, Xiao Y, Zhou W, Zeng Q, Zhang X, Wu Y, Liu J, Ying M (2018) LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk. Int J Cancer 144:1345–1355

    PubMed  PubMed Central  Google Scholar 

  • Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J (2016) Novel Insights into the roles of rho kinase in cancer. Arch Immunol Ther Exp (Warsz) 64:259–278

    CAS  Google Scholar 

  • Wioland H, Guichard B, Senju Y, Myram S, Lappalainen P, Jegou A, Romet-Lemonne G (2017) ADF/cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr Biol 27(1956–1967):e7

    Google Scholar 

  • Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Chen J, Li ZY, Zhang RG, Zhu F, Wu G (2015) Rho kinase inhibitor fasudil suppresses the vasculogenic mimicry of B16 mouse melanoma cells both in vitro and in vivo. Mol Cancer Ther 14:1582–1590

    PubMed  CAS  Google Scholar 

  • Xia Y, Cai X, Fan J, Zhang L, Li Z, Ren J, Wu G, Zhu F (2017) RhoA/ROCK pathway inhibition by fasudil suppresses the vasculogenic mimicry of U2OS osteosarcoma cells in vitro. Anticancer Drugs 28:514–521

    PubMed  CAS  Google Scholar 

  • Xia Y, Cai XY, Fan JQ, Zhang LL, Ren JH, Li ZY, Zhang RG, Zhu F, Wu G (2018) The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms. Int J Cancer 144:2227–2238

    PubMed  Google Scholar 

  • Yoshioka K, Foletta V, Bernard O, Itoh K (2003) A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 100:7247–7252

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li A, Shi J, Fang Y, Gu C, Cai J, Lin C, Zhao L, Liu S (2018a) Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting beta-catenin nuclear translocation. Cell Death Dis 9:749

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang Y, Xue J (2018b) Paclitaxel inhibits breast cancer metastasis via suppression of Aurora kinase-mediated cofilin-1 activity. Exp Ther Med 15:1269–1276

    PubMed  CAS  Google Scholar 

  • Zhao R, Choi BY, Lee MH, Bode AM, Dong Z (2016) Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 8:30–39

    PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Su J, Shi L, Liao Q, Su Q (2013) DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion. Oncol Rep 29:605–612

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research program through the NRF Funded by the Ministry of Education, Science and Technology (2019R1A2C1005899) and “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ013842)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Hyun Shim.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Kundu, J.K., Chae, JI. et al. Targeting ROCK/LIMK/cofilin signaling pathway in cancer. Arch. Pharm. Res. 42, 481–491 (2019). https://doi.org/10.1007/s12272-019-01153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01153-w

Keywords