Abstract
Hyoscyamus muticus L. is a traditional medicine used as antispasmodic and sedative. Herein, we aimed to determine the phytochemical constituents and for the first time its anti-cancer activities. The phytochemical constituents of the different extracts were evaluated by calorimetric methods. The anti-cancer activities of the extracts were tested against leukemia, breast, renal, and prostate cancers cell lines. 4, 6-Diamidino-2-phenylindole (DAPI) staining, flow cytometric analysis, knockdown of ASK1, and reactive oxygen species (ROS) production were evaluated to clarify the mechanism of action. Phytochemical screening confirmed the presence of wide range of phytoconstituents. Hyoscyamus muticus methanolic extracts (HMME) showed the highest anti-cancer activities against leukemia, breast, renal, and prostate cancers as compared to ethanol and aqueous extracts. Specifically, HMME exerted cytotoxic effect against the MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) cell lines with IC50 values of 8.75 and 7.25 μg/mL, respectively. Mechanistically, DAPI staining and flow cytometric analysis revealed that HMME induces apoptosis via the death receptor, FAS, but not the mitochondrial pathway. Moreover, ASK1 and p38 were rapidly activated in response to HMME, and knockdown of ASK1 by a small interference of RNA specific to Ask1 attenuated p38 and caspase-3 activation and suppressed apoptosis, implying that HMME-induced apoptosis relies on the ASK1-p38-caspase-3 pathway. Furthermore, we confirmed that cellular ROS generation was a critical mediator in HMME-induced apoptosis because the ROS-scavenger N-acetyl cysteine significantly decreased the phosphorylation of ASK1 and HMME-induced apoptosis. Our results confirmed HMME cytotoxic effects in TNBCs via ROS-dependent activation of the Fas/FasL-ASK1-p38 axis.
Similar content being viewed by others
Data Availability
All data generated or analysed during this study are included in this published article.
Change history
24 December 2022
An Erratum to this paper has been published: https://doi.org/10.1007/s12257-022-1111-8
References
Bianchini, G., J. M. Balko, I. A. Mayer, M. E. Sanders, and L. Gianni (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 13: 674–690.
Swain, S. (2008) Triple-negative breast cancer: metastatic risk and role of platinum agents. Proceedings of the Annual Meeting of the American Society for Clinical Oncology. May 30–June 3. Chicago, IL, USA.
den Brok, W. D., C. H. Speers, L. Gondara, E. Baxter, S. K. Tyldesley, and C. A. Lohrisch (2017) Survival with metastatic breast cancer based on initial presentation, de novo versus relapsed. Breast Cancer Res. Treat. 161: 549–556.
Hengartner, M. O. (2000) The biochemistry of apoptosis. Nature. 407: 770–776.
Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35: 495–516.
Hongmei, Z. (2012) Extrinsic and intrinsic apoptosis signal pathway review. pp. 1–22. In: T. M. Ntuli (ed.). Apoptosis and Medicine. IntechOpen, London, UK.
Sim, K. H., M.-S. Shu, S. Kim, J.-Y. Kim, B.-H. Choi, and Y. J. Lee (2021) Cilostazol induces apoptosis and inhibits proliferation of hepatocellular carcinoma cells by activating AMPK. Biotechnol. Bioprocess Eng. 26: 776–785.
Abd El-Hafeez, A. A., H. O. Khalifa, E. A. Mahdy, V. Sharma, T. Hosoi, P. Ghosh, K. Ozawa, M. M. Montano, T. Fujimura, A. R. Ibrahim, M. Abdelhamid, S. P. Pack, S. A. Shouman, and S. Kawamoto (2019) Anticancer effect of nor-wogonin (5, 7, 8-trihydroxyflavone) on human triple-negative breast cancer cells via downregulation of TAK1, NF-κB, and STAT3. Pharmacol. Rep. 71: 289–298.
Abd El-Hafeez, A. A., T. Fujimura, R. Kamei, N. Hirakawa, K. Baba, K. Ono, and S. Kawamoto (2018) A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma. Cytotechnology. 70: 899–912.
Abd El-Hafeez, A. A., T. Fujimura, R. Kamei, N. Hirakawa, K. Baba, K. Ono, and S. Kawamoto (2018) Synergistic tumor suppression by a Perilla frutescens-derived methoxyflavanone and anti-cancer tyrosine kinase inhibitors in A549 human lung adenocarcinoma. Cytotechnology. 70: 913–919.
Safarzadeh, E., S. S. Shotorbani, and B. Baradaran (2014) Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull. 4 Suppl 1: 421–427.
Kim, E.-J., C.-W. Kang, N.-H. Kim, Y. B. Seo, S.-W. Nam, and G.-D. Kim (2018) Induction of apoptotic cell death on human cervix cancer HeLa cells by extract from Loranthus yadoriki. Biotechnol. Bioprocess Eng. 23: 201–207.
Wang, H., T. O. Khor, L. Shu, Z. Y. Su, F. Fuentes, J. H. Lee, and A. N. T. Kong (2012) Plants vs. cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med. Chem. 12: 1281–1305.
Pham, T. N. A., B. Le, and S. H. Yang (2021) Anticancer activity of the potential Pyropia yezoensis galactan fractionated in human prostate cancer cells. Biotechnol. Bioprocess Eng. 26: 63–70.
Liang, Y., D. Kong, Y. Zhang, S. Li, Y. Li, A. Ramamoorthy, and J. Ma (2020) Fisetin inhibits cell proliferation and induces apoptosis via JAK/STAT3 signaling pathways in human thyroid TPC 1 cancer cells. Biotechnol. Bioprocess Eng. 25: 197–205.
Min, H.-S. and J.-H. Kim (2021) Kinetic and thermodynamic study of the ultrasonic acetone-pentane fractional precipitation of paclitaxel from the plant cell cultures of Taxus chinensis. Biotechnol. Bioprocess Eng. 26: 660–668.
Koh, Y.-C., C.-T. Ho, and M.-H. Pan (2020) Recent advances in cancer chemoprevention with phytochemicals. J. Food Drug Anal. 28: 14–37.
Abd El-Twab, M. H., N. A. Barakat, and A. A. Abd El-Hafeez (2010) Cytogenetical and ecological studies of some wild congeneric species in the Solanaceae distributed in upper Egypt. Chromosom Bot. 5: 65–73.
Al-Snafi, A. E. (2018) Therapeutic importance of Hyoscyamus species grown in Iraq (Hyoscyamus albus, Hyoscyamus niger and Hyoscyamus reticulates)- a review. IOSR J. Pharm. 8: 18–32.
Yahia, M., M. Yahia, and A. Benhouda (2018) Antitumor activity of methanolic fractions extracted from the aerial part of Algerian Hyoscyamus albus and apoptotic cell aspect screening. Indian J. Pharm. Educ. Res. 52: 262–267.
Deepti, K., P. Umadevi, G. Vijayalakshmi, and B. Vinod polarao (2012) Antimicrobial activity and phytochemical analysis of Morinda tinctoria Roxb. leaf extracts. Asian Pac. J. Trop. Biomed. 2: S1440–S1442.
Mujeeb, F., P. Bajpai, and N. Pathak (2014) Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. Biomed Res. Int. 2014: 497606.
Khalifa, H. O., M. Kamimoto, T. Shimamoto, and T. Shimamoto (2015) Antimicrobial effects of blueberry, raspberry, and strawberry aqueous extracts and their effects on virulence gene expression in Vibrio cholerae. Phytother. Res. 29: 1791–1797.
Kavitha Chandran, C. I. and G. Indira (2016) Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes Kunthiana (Neelakurinji). J. Med. Plants Stud. 4: 282–286.
Abd El-Hafeez, A. A. and O. M. Rakha (2017) Paederus alfieri extract induces apoptosis in human myeloid leukemia K562 cells. Asian J. Pharm. Clin. Res. 10: 72–75.
Abd El-Hafeez, A. A., H. O. Khalifa, R. A. Elgawish, S. A. Shouman, M. H. Abd El-Twab, and S. Kawamoto (2018) Melilotus indicus extract induces apoptosis in hepatocellular carcinoma cells via a mechanism involving mitochondria-mediated pathways. Cytotechnology. 70: 831–842.
Lee, S., J. H. Shim, H. Gim, H. S. Park, and B. J. Kim (2016) Ethanol extract of Oldenlandia diffusa - an effective chemotherapeutic for the treatment of colorectal cancer in humans: -anticancer effects of Oldenlandia diffusa. J. Pharmacopuncture 19: 51–58.
Reed, J. C. (2000) Mechanisms of apoptosis. Am. J. Pathol. 157: 1415–1430.
Nishitoh, H., A. Matsuzawa, K. Tobiume, K. Saegusa, K. Takeda, K. Inoue, S. Hori, A. Kakizuka, and H. Ichijo (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16: 1345–1355.
Hattori, K., I. Naguro, C. Runchel, and H. Ichijo (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun. Signal. 7: 9.
Circu, M. L. and T. Y. Aw (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48: 749–762.
Azim, H. A., M. Ghosn, K. Oualla, and L. Kassem (2020) Personalized treatment in metastatic triple-negative breast cancer: the outlook in 2020. Breast J. 26: 69–80.
Paradiso, A. and C. F. Singer (2017) Therapeutic strategies in triple-negative breast cancer. Breast Care (Basel). 12: 6–7.
Nurgali, K., R. T. Jagoe, and R. Abalo (2018) Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 9: 245.
Abdelhamid, M. A. A. and S. P. Pack (2021) Biomimetic and bioinspired silicifications: recent advances for biomaterial design and applications. Acta Biomater. 120: 38–56.
Abdelhamid, M. A. A., K. B. Yeo, M. R. Ki, and S. P. Pack (2019) Self-encapsulation and controlled release of recombinant proteins using novel silica-forming peptides as fusion linkers. Int. J. Biol. Macromol. 125: 1175–1183.
Nguyen, T. K. M., M. R. Ki, R. G. Son, K. H. Kim, J. Hong, and S. P. Pack (2021) Synthesis of sub-50 nm bio-inspired silica particles using a C-terminal-modified ferritin template with a silica-forming peptide. J. Ind. Eng. Chem. 101: 262–269.
Ki, M.-R., T. K. M. Nguyen, H. S. Jun, and S. P. Pack (2018) Biosilica-enveloped ferritin cage for more efficient drug deliveries. Process Biochem. 68: 182–189.
Ki, M.-R., J. K. Kim, S. H. Kim, T. K. M. Nguyen, K. H. Kim, and S. P. Pack (2020) Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J. Ind. Eng. Chem. 81: 367–374.
Alghazeer, R., H. El-Saltani, N. Saleh, A. Al-Najjar, and F. Hebail (2012) Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Nat. Sci. (Irvine) 4: 324–335.
Jassbi, A. R., R. Miri, M. Masroorbabanari, M. Asadollahi, M. Attarroshan, and I. T. Baldwin (2014) HPLC-DAD-ESIMS analyses of Hyoscyamus niger and H. reticulatus for their antioxidant constituents. Austin Chromatogr. 1: 1022.
Hossain, M. A., A. M. Weli, and S. H. I. Ahmed (2019) Comparison of total phenols, flavonoids and antioxidant activity of various crude extracts of Hyoscyamus gallagheri traditionally used for the treatment of epilepsy. Clin. Phytoscience. 5: 20.
Lee, M. M.-L., B. D. Chan, W.-Y. Wong, Z. Qu, M.-S. Chan, T.-W. Leung, Y. Lin, D. K.-W. Mok, S. Chen, and W. C.-S. Tai (2020) Anti-cancer activity of Centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways. Front. Oncol. 10: 491.
Sofi, M. S., M. K. Sateesh, M. Bashir, G. Harish, T. R. Lakshmeesha, S. Vedashree, and A. B. Vedamurthy (2013) Cytotoxic and proapoptotic effects of Abrus precatorius L. on human metastatic breast cancer cell line, MDA-MB-231. Cytotechnology. 65: 407–417.
Song, H., S. Zhang, J. Mou, G. Gong, Y. Huang, R. Ma, H. Wang, and Q. Tan (2019) Cytotoxic activities against MCF-7 and MDAMB-231, antioxidant and α-glucosidase inhibitory activities of Trachelospermum jasminoides extracts in vitro. Biotechnol. Biotechnol. Equip. 33: 1671–1679.
Firoozinia, M., S. Z. Moghadamtousi, A. Sadeghilar, H. Karimian, and M. I. B. Noordin (2015) Golden natural plant compounds activate apoptosis via both mitochondrial and death receptor pathways: a review. Electron. J. Biol. 11: 126–137.
Walczak, H. (2013) Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb. Perspect. Biol. 5: a008698.
Chang, H. Y., H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore (1998) Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science. 281: 1860–1863.
Ichijo, H., E. Nishida, K. Irie, P. ten Dijke, M. Saitoh, T. Moriguchi, M. Takagi, K. Matsumoto, K. Miyazono, and Y. Gotoh (1997) Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275: 90–94.
Nakagawa, H., Y. Hirata, K. Takeda, Y. Hayakawa, T. Sato, H. Kinoshita, K. Sakamoto, W. Nakata, Y. Hikiba, M. Omata, H. Yoshida, K. Koike, H. Ichijo, and S. Maeda (2011) Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology. 54: 185–195.
White, D. E. and S. A. Burchill (2010) Fenretinide-dependent upregulation of death receptors through ASK1 and p38α enhances death receptor ligand-induced cell death in Ewing’s sarcoma family of tumours. Br. J. Cancer. 103: 1380–1390.
Kavurma, M. M. and L. M. Khachigian (2003) Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ. 10: 36–44.
Halasi, M., M. Wang, T. S. Chavan, V. Gaponenko, N. Hay, and A. L. Gartel (2013) ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem. J. 454: 201–208.
Sun, X., W. Wang, J. Chen, X. Cai, J. Yang, Y. Yang, H. Yan, X. Cheng, J. Ye, W. Lu, C. Hu, H. Sun, J. Pu, and P. Cao (2017) The natural diterpenoid isoforretin A inhibits thioredoxin-1 and triggers potent ROS-mediated antitumor effects. Cancer Res. 77: 926–936.
Kamata, H., S. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 120: 649–661.
Noguchi, T., K. Takeda, A. Matsuzawa, K. Saegusa, H. Nakano, J. Gohda, J. Inoue, and H. Ichijo (2005) Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem. 280: 37033–37040.
Acknowledgements
Amer Ali Abd El-Hafeez was supported by an NIH-funded Cancer Therapeutics Training Program (CT2, T32 CA121938), Pradipta Ghosh by the NIH (CA238042, CA100768, and CA160911), Ahmed R. N. Ibrahim by the Institute of Research and Consulting Studies at King Khalid University grant (15-102-S-2020). This work also was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A5A8032895, NRF-2021R1A2C2011564).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors declare no conflict of interest.
Neither ethical approval nor informed consent was required for this study.
Additional information
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Abd El-Hafeez, A.A., Marzouk, H.M.M., Abdelhamid, M.A.A. et al. Anti-cancer Effect of Hyoscyamus muticus Extract via Its Activation of Fas/FasL-ASK1-p38 Pathway. Biotechnol Bioproc E 27, 833–845 (2022). https://doi.org/10.1007/s12257-022-0085-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-022-0085-x