Skip to main content
Log in

Kinesin-5 Mediated Chromosome Congression in Insect Spindles

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The microtubule motor protein kinesin-5 is well known to establish the bipolar spindle by outward sliding of antiparallel interpolar microtubules. In yeast, kinesin-5 also facilitates chromosome alignment “congression” at the spindle equator by preferentially depolymerizing long kinetochore microtubules (kMTs). The motor protein kinesin-8 has also been linked to chromosome congression. Therefore, we sought to determine whether kinesin-5 or kinesin-8 facilitates chromosome congression in insect spindles.

Methods

RNAi of the kinesin-5 Klp61F and kinesin-8 Klp67A were performed separately in Drosophila melanogaster S2 cells to test for inhibited chromosome congression. Klp61F RNAi, Klp67A RNAi, and control metaphase mitotic spindles expressing fluorescent tubulin and fluorescent Cid were imaged, and their fluorescence distributions were compared.

Results

RNAi of Klp61F with a weak Klp61F knockdown resulted in longer kMTs and less congressed kinetochores compared to control over a range of conditions, consistent with kinesin-5 length-dependent depolymerase activity. RNAi of the kinesin-8 Klp67A revealed that kMTs relative to the spindle lengths were not longer compared to control, but rather that the spindles were longer, indicating that Klp67A acts preferentially as a length-dependent depolymerase on interpolar microtubules without significantly affecting kMT length and chromosome congression.

Conclusions

This study demonstrates that in addition to establishing the bipolar spindle, kinesin-5 regulates kMT length to facilitate chromosome congression in insect spindles. It expands on previous yeast studies, and it expands the role of kinesin-5 to include kMT assembly regulation in eukaryotic mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

kMT:

Kinetochore microtubule

iMT:

Interpolar microtubule

RNAi:

RNA interference

dsRNA:

Double stranded RNA

NEB:

Nuclear envelope breakdown

AO:

Anaphase onset

PEF:

Polar ejection force

References

  1. Ault, J. G., and C. L. Rieder. Centrosome and kinetochore movement during mitosis. Curr. Opin. Cell Biol. 6:41–49, 1994.

    Article  Google Scholar 

  2. Brinkley, B. R., R. P. Zinkowski, W. L. Mollon, F. M. Davis, M. A. Pisegna, M. Pershouse, and P. N. Rao. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336:251–254, 1988.

    Article  Google Scholar 

  3. Brouhard, G. J., and A. J. Hunt. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl. Acad. Sci. USA 102:13903–139038, 2005.

    Article  Google Scholar 

  4. Brust-Mascher, I., G. Civelekoglu-Scholey, M. Kwon, A. Mogilner, and J. M. Scholey. Model for anaphase B: role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc. Natl. Acad. Sci. USA 101:15938–15943, 2004.

    Article  Google Scholar 

  5. Brust-Mascher, I., P. Sommi, D. K. Cheerambathur, and J. M. Scholey. Kinesin-5 – dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis. Mol. Biol. Cell 20:1749–1762, 2009.

    Article  Google Scholar 

  6. Cassimeris, L., C. L. Rieder, and E. D. Salmon. Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J. Cell Sci. 107:285–297, 1994.

    Google Scholar 

  7. Chacón, J. M., S. Mukherjee, B. M. Schuster, D. J. Clarke, and M. K. Gardner. Pericentromere tension is self-regulated by spindle structure in metaphase. J. Cell Biol. 205:313–324, 2014.

    Article  Google Scholar 

  8. Chen, Y., and W. O. Hancock. Kinesin-5 is a microtubule polymerase. Nat. Commun. Nature Publishing Group 6:1–10, 2015.

    Google Scholar 

  9. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci., USA 97:6499–503, 2000.

  10. Demchouk, A. O., M. K. Gardner, and D. J. Odde. Microtubule tip tracking and tip structures at the nanometer scale using digital fluorescence microscopy. Cell. Mol. Bioeng. 4:192–204, 2011.

    Article  Google Scholar 

  11. Ferenz, N. P., A. Gable, and P. Wadsworth. Mitotic functions of kinesin-5. Semin. Cell Dev. Biol. Elsevier Ltd 21:255–259, 2010.

    Article  Google Scholar 

  12. Fridman, V., A. Gerson-Gurwitz, O. Shapira, N. Movshovich, S. Lakämper, C. Schmidt, and L. Gheber. Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J. Cell Sci. 126:4147–4159, 2013.

    Article  Google Scholar 

  13. Funabiki, H., and A. W. Murray. The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424, 2000.

    Article  Google Scholar 

  14. Gardner, M. K., C. G. Pearson, B. L. Sprague, T. R. Zarzar, K. Bloom, E. D. Salmon, and D. J. Odde. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16:3764–3775, 2005.

    Article  Google Scholar 

  15. Gardner, M.K., D.C. Bouck, L.V. Paliulis, J.B. Meehl, E.T. O’Toole, J. Haase, A. Soubry, A.P. Joglekar, M. Windey, E.D. Salmon, K. Bloom, and D. J. Odde. Chromosome congression by kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135:894–906, 2008.

  16. Gerson-Gurwitz, A., C. Thiede, N. Movshovich, V. Fridman, M. Podolskaya, T. Danieli, S. Lakämper, D. R. Klopfenstein, C. F. Schmidt, and L. Gheber. Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J. 30:4942–4954, 2011.

    Article  Google Scholar 

  17. Goodwin, S. S., and R. D. Vale. Patronin regulates the microtubule network by protecting microtubule minus ends. Cell 143:263–274, 2010.

    Article  Google Scholar 

  18. Goshima, G., et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316:417–421, 2007.

    Article  Google Scholar 

  19. Goshima, G., and R. D. Vale. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162:1003–1016, 2003.

    Article  Google Scholar 

  20. Goshima, G., R. Wollman, N. Stuurman, J. M. Scholey, and R. D. Vale. Length control of the metaphase spindle. Curr. Biol. 15:1979–1988, 2005.

    Article  Google Scholar 

  21. Heck, M., A. Pereira, P. Pesavento, Y. Yannoni, A. C. Spradling, and L. S. Goldstein. The kinesin-like protein KLP61F is essential for mitosis in Drosophila. J. Cell Biol. 123:665–679, 1993.

    Article  Google Scholar 

  22. Henikoff, S., K. Ahmad, J.S. Platero, and B. van Steensel. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci., USA 97:716–721, 2000.

  23. Hoyt, M. A., L. He, K. K. Loo, and W. S. Saunders. Kinesin-related gene products required for mitotic spindle assembly. J. Cell Biol. 118:109–120, 1992.

    Article  Google Scholar 

  24. Inoué, S., and E. D. Salmon. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6:1619–1640, 1995.

    Article  Google Scholar 

  25. Ke, K., J. Cheng, and A. J. Hunt. The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr. Biol. Elsevier Ltd 19:807–815, 2009.

    Article  Google Scholar 

  26. Levesque, A. A., and D. A. Compton. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell. Biol. 154:1135–1146, 2001.

    Article  Google Scholar 

  27. Maiato, H., P. J. Hergert, S. Moutinho-Periera, Y. Dong, K. J. Vandenbeldt, C. L. Rieder, and B. F. McEwen. The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells. Chromosoma 115:469–480, 2006.

    Article  Google Scholar 

  28. Maiato, H., C. E. Sunkel, and W. C. Earnshaw. Dissecting mitosis by RNAi in Drosophila tissue culture cells. Biol. Proced. Online 5:153–161, 2003.

    Article  Google Scholar 

  29. Mayr, M. I., S. Hümmer, J. Bormann, T. Grüner, S. Adio, G. Woehlke, and T. U. Mayer. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17:488–498, 2007.

    Article  Google Scholar 

  30. McCoy, K. M., E. S. Tubman, A. Claas, D. Tank, S. A. Clancy, E. T. O’Toole, J. Berman, and D. J. Odde. Physical limits on kinesin-5 mediated chromosome congression in the smallest mitotic spindles. Mol. Biol. Cell 26:3999–4014, 2015.

    Article  Google Scholar 

  31. Mische, S., Y. He, L. Ma, M. Li, M. Serr, and T. S. Hays. Dynein light intermediate chain: an essential subunit that contributes to spindle checkpoint inactivation. Mol. Biol. Cell 19:4918–4929, 2008.

    Article  Google Scholar 

  32. Moore, D. S., and G. McCabe. Introduction to the practice of statistics, Vol. Sixth. New York: WH Freeman and Company, 2009.

    MATH  Google Scholar 

  33. O’Connell, C. B., J. Loncarek, P. Hergert, A. Kourtidis, D. S. Conklin, and A. Khodjakov. The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes. J. Cell Biol. 183:29–36, 2008.

    Article  Google Scholar 

  34. O’Connell, C. B., J. Lončarek, P. Kaláb, and A. Khodjakov. Relative contributions of chromatin and kinetochores to mitotic spindle assembly. J. Cell Biol. 187:43–51, 2009.

    Article  Google Scholar 

  35. Orth, J. D., Y. Tang, J. Shi, C. T. Loy, C. Amendt, C. Wilm, F. T. Zenke, and T. J. Mitchison. Quantitative live imaging of cancer and normal cells treated with Kinesin-5 inhibitors indicates significant differences in phenotypic responses and cell fate. Mol. Cancer Ther. 7:3480–3489, 2008.

    Article  Google Scholar 

  36. Rieder, C. L., E. A. Davison, L. C. Jensen, L. Cassimeris, and E. D. Salmon. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103:581–591, 1986.

    Article  Google Scholar 

  37. Rieder, C. L., and H. Maiato. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7:637–651, 2004.

    Article  Google Scholar 

  38. Rogers, S. L., G. C. Rogers, D. J. Sharp, and R. D. Vale. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158:873–884, 2002.

    Article  Google Scholar 

  39. Roof, D. M., P. B. Meluh, and M. D. Rose. Kinesin-related proteins required for assembly of the mitotic spindle. J. Cell Biol. 118:95–108, 1992.

    Article  Google Scholar 

  40. Roostalu, J., C. Hentrich, P. Bieling, I. A. Telley, E. Schiebel, and T. Surrey. Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99, 2011.

    Article  Google Scholar 

  41. Savoian, M. S., M. K. Gatt, M. G. Riparbelli, G. Callaini, and D. M. Glover. Drosophila Klp67A is required for proper chromosome congression and segregation during meiosis I. J. Cell Sci. 117:3669–3677, 2004.

    Article  Google Scholar 

  42. Savoian, M. S., and D. M. Glover. Drosophila Klp67A binds prophase kinetochores to subsequently regulate congression and spindle length. J. Cell Sci. 123:767–776, 2010.

    Article  Google Scholar 

  43. Sawin, K., K. LeGuellec, M. Phillipe, and T. J. Mitchison. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–543, 1992.

    Article  Google Scholar 

  44. Seetapun, D., B. T. Castle, A. J. McIntyre, P. T. Tran, and D. J. Odde. Estimating the microtubule GTP cap size in vivo. Curr. Biol. 22:1681–1687, 2012.

    Article  Google Scholar 

  45. Sharp, D.J., K.L. McDonald, H.M. Brown, H.J. Matthies, C. Walczak, R.D. Vale, T.J. Mitchison, and J.M. Scholey. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144:125–138, 1999

  46. Sharp, D. J., K. R. Yu, J. C. Sisson, W. Sullivan, and J. M. Scholey. Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat. Cell Biol. 1:51–54, 1999.

    Article  Google Scholar 

  47. Sprague, B. L., C. G. Pearson, P. S. Maddox, K. S. Bloom, E. D. Salmon, and D. J. Odde. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. Elsevier 84:3529–3546, 2003.

    Article  Google Scholar 

  48. Straight, A. F., J. W. Sedat, and A. W. Murray. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143:687–694, 1998.

    Article  Google Scholar 

  49. Stumpff, J., G. von Dassow, M. Wagenbach, C. Asbury, and L. Wordeman. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14:252–262, 2008.

    Article  Google Scholar 

  50. Stumpff, J., M. Wagenbach, A. Franck, C.L. Asbury, and L. Wordeman. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev. Cell Elsevier Inc. 22:1017–29, 2012.

  51. Vale, R. D., J. A. Spudich, and E. R. Griffis. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J. Cell Biol. 186:727–738, 2009.

    Article  Google Scholar 

  52. Varga, V., J. Helenius, K. Tanaka, A. A. Hyman, T. U. Tanaka, and J. Howard. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957–962, 2006.

    Article  Google Scholar 

  53. Wargacki, M. M., J. C. Tay, E. G. Muller, C. L. Asbury, and T. N. Davis. Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase. Cell Cycle 9:2581–2588, 2010.

    Article  Google Scholar 

  54. Winey, M., C. L. Mamay, E. T. O’Toole, D. N. Mastronarde, T. H. Giddings, Jr, K. L. McDonald, and J. R. McIntosh. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J. Cell Biol. 129:1601–1615, 1995.

    Article  Google Scholar 

  55. Wise, D. A., and B. R. Brinkley. Mitosis in cells with unreplicated genomes (MUGs): spindle assembly and behavior of centromere fragments. Cell Motil. Cytoskeleton 36:291–302, 1997.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Lawrence Goldstein for providing us with rat-anti-Klp61F antibody. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award No. R01GM071522 and R01GM076177 to D.J.O. and Award RO1GM044757 to T.S.H. E.T. was a recipient of a University of Minnesota Interdisciplinary Doctoral Fellowship through the Institute for Advanced Study.

Author Contributions

E.T. conducted RNAi experiments, collected images, wrote analysis algorithms, ran statistical tests, analyzed and interpreted results, prepared figures, and wrote paper. E.T. and Y.H. designed primers, prepared dsRNA, and ran Western Blot. Y.H. contributed to intellectual ideas. T.H. and D.O., co-principal investigators, oversaw the project and contributed to intellectual ideas.

Conflicts of interest

Emily Tubman, Yungui He, Thomas S. Hays, and David J. Odde declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Tubman.

Additional information

Associate Editor William O. Hancock oversaw the review of this article.

Thomas S. Hays and David J. Odde are co-senior authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tubman, E., He, Y., Hays, T.S. et al. Kinesin-5 Mediated Chromosome Congression in Insect Spindles. Cel. Mol. Bioeng. 11, 25–36 (2018). https://doi.org/10.1007/s12195-017-0500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0500-0

Keywords

Navigation