Skip to main content
Log in

Target-site resistance to neonicotinoids

  • Short Communication
  • Published:
Journal of Chemical Biology

Abstract

Neonicotinoid insecticides selectively target the invertebrate nicotinic acetylcholine receptor and disrupt excitatory cholinergic neurotransmission. First launched over 20 years ago, their broad pest spectrum, variety of application methods and relatively low risk to nontarget organisms have resulted in this class dominating the insecticide market with global annual sales in excess of $3.5 bn. This remarkable commercial success brings with it conditions in the field that favour selection of resistant phenotypes. A number of important pest species have been identified with mutations at the nicotinic acetylcholine receptor associated with insensitivity to neonicotinoids. The detailed characterization of these mutations has facilitated a greater understanding of the invertebrate nicotinic acetylcholine receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

References

  1. Jeschke P, Nauen R, Beck ME (2013) Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew Chem Int Ed 52:9464–9485. doi:10.1002/anie.201302550

    Article  CAS  Google Scholar 

  2. Gerwick BC, Sparks TC (2014) Natural products for pest control: an analysis of their role, value and future. Pest Manag Sci 70:1169–1185. doi:10.1002/ps.3744

    Article  CAS  Google Scholar 

  3. Cutler P et al (2013) Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag Sci 69:607–619. doi:10.1002/ps.3413

    Article  CAS  Google Scholar 

  4. Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908. doi:10.1021/jf101303g

    Article  CAS  Google Scholar 

  5. Corringer PJ, Le NN, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458

    Article  CAS  Google Scholar 

  6. Matsuda K, Kanaoka S, Akamatsu M, Sattelle DB (2009) Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol Pharmacol 76:1–10

    Article  CAS  Google Scholar 

  7. Jones AK, Brown LA, Sattelle DB (2007) Insect nicotinic acetylcholine receptor gene families: from genetic model organism to vector, pest and beneficial species. Invertebr Neurosci 7:67–73

    Article  CAS  Google Scholar 

  8. Salgado VL, Saar R (2004) Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J Insect Physiol 50:867–879

    Article  CAS  Google Scholar 

  9. Lind RJ, Clough MS, Reynolds SE, Earley FGP (1998) [3H] Imidacloprid labels high- and low-affinity nicotinic acetylcholine receptor-like binding sites in the aphid Myzus persicae (Hemiptera: Aphididae). Pestic Biochem Physiol 62:3–14

    Article  CAS  Google Scholar 

  10. Xu X, Bao H, Shao X, Zhang Y, Yao X, Liu Z, Li Z (2009) Pharmacological characterization of cis-nitromethylene neonicotinoids in relation to imidacloprid binding sites in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 19:1–8

    Article  Google Scholar 

  11. Collins T, Lansdell SJ, Millar NS (2009) Characterization of insect nicotinic receptors by heterologous expression: insecticide selectivity and the influence of molecular chaperones. Biochem Pharmacol 78:902

    Article  CAS  Google Scholar 

  12. Bass C et al (2011) Mutation of a nicotinic acetylcholine receptor beta subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci 12:51

    Article  CAS  Google Scholar 

  13. Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci U S A 102:8420–8425

    Article  CAS  Google Scholar 

  14. Karunker I et al (2008) Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol 38:634–644

    Article  CAS  Google Scholar 

  15. Jones CM et al (2011) Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci. Pestic Biochem Physiol 101:53–58

    Article  CAS  Google Scholar 

  16. Yang N et al (2013) Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance. Insect Mol Biol 22:485–496. doi:10.1111/imb.12038

    Article  CAS  Google Scholar 

  17. Karatolos N, Denholm I, Williamson M, Nauen R, Gorman K (2010) Incidence and characterisation of resistance to neonicotinoid insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae). Pest Manag Sci 66:1304–1307

    Article  CAS  Google Scholar 

  18. Bass C et al (2011) Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata Lugens. Insect Mol Biol 20:763–773. doi:10.1111/j.1365-2583.2011.01105.x

    Article  CAS  Google Scholar 

  19. Puinean AM et al. (2010) Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics 6: doi:10.1371/journal.pgen.1000999

  20. Zhao JZ, Bishop BA, Grafius EJ (2000) Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 93:1508–1514

    Article  CAS  Google Scholar 

  21. Kshirsagar SDSNS, Moharil MP (2012) Monitoring of insecticide resistance in cotton leafhoppers, Amrasca bigutulla bigutulla (Ishida). Ann Pl Prot Sci 20:3

    Google Scholar 

  22. Tiwari S, Mann RS, Rogers ME, Stelinski LL (2011) Insecticide resistance in field populations of Asian citrus psyllid in Florida. Pest Manag Sci 67:1258–1268. doi:10.1002/ps.2181

    Article  CAS  Google Scholar 

  23. Wang KY, Liu TX, Yu CH, Jiang XY, Yi MQ (2002) Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. J Econ Entomol 95:407–413

    Article  CAS  Google Scholar 

  24. Liu Z et al (2009) Heteromeric co-assembly of two insect nicotinic acetylcholine receptor alpha subunits: influence on sensitivity to neonicotinoid insecticides. J Neurochem 108:498–506

    Article  CAS  Google Scholar 

  25. Liu Z, Williamson MS, Lansdell SJ, Han Z, Denholm I, Millar NS (2006) A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J Neurochem 99:1273–1281

    Article  CAS  Google Scholar 

  26. Yixi Z et al (2009) Functional co-expression of two insect nicotinic receptor subunits (Nlalpha3 and Nlalpha8) reveals the effects of a resistance-associated mutation (Nlalpha3) on neonicotinoid insecticides. J Neurochem 110:1855–1862

    Article  Google Scholar 

  27. Liu Z, Han Z (2006) Fitness costs of laboratory-selected imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Stal Pest Manag Sci 62:279–282

    Article  CAS  Google Scholar 

  28. Levitt M (2001) The birth of computational structural biology. Nat Struct Mol Biol 8:392–393

    Article  CAS  Google Scholar 

  29. Ceron-Carrasco JP, Jacquemin D, Graton J, Thany S, Le Questel J-Y (2013) New insights on the molecular recognition of imidacloprid with aplysia californica AChBP: a computational study. J Phys Chem B 117:3944–3953. doi:10.1021/jp310242n

    Article  CAS  Google Scholar 

  30. Shi X-G, Zhu Y-K, Xia X-M, Qiao K, Wang H-Y, Wang K-Y (2012) The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). J Food Agric Environ 10:1227–1230

    CAS  Google Scholar 

  31. Shimomura M, Yokota M, Ihara M, Akamatsu M, Sattelle DB, Matsuda K (2006) Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol Pharmacol 70:1255–1263

    Article  CAS  Google Scholar 

  32. Beckingham C, Phillips J, Gill M, Crossthwaite AJ (2013) Investigating nicotinic acetylcholine receptor expression in neonicotinoid resistant Myzus persicae. FRC Pestic Biochem Physiol 107:293–298

    Article  CAS  Google Scholar 

  33. Slater R, Paul VL, Andrews M, Garbay M, Camblin P (2012) Identifying the presence of neonicotinoidresistant peach-potato aphid (Myzus persicae) in the peach-growing regions of Southern France and Northern Spain. Pest Manag Sci 68:634–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Crossthwaite.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crossthwaite, A.J., Rendine, S., Stenta, M. et al. Target-site resistance to neonicotinoids. J Chem Biol 7, 125–128 (2014). https://doi.org/10.1007/s12154-014-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-014-0116-y

Keywords

Navigation