Skip to main content

Advertisement

Log in

Distinct gene expression patterns of SOX2 and SOX2OT variants in different types of brain tumours

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Numerous investigations have been recently published on the dysregulated expression of long-noncoding RNAs (lncRNAs) in various cancer types, emphasizing that abnormal lncRNA expression is a major contributor to tumourigenesis. A broad spectrum of lncRNAs is expressed in the central nervous system, where these RNAs seem to play key roles in brain development and function. In addition to expressing SOX2, a master regulator of pluripotency that lies within its third intron, lncRNA SOX2OT has a proposed role in regulating neural development. Based on our previous studies, alternative splicing of SOX2OT generates two alternatively spliced variants (SOX2OT-S1 and SOX2OT-S2). The present study investigated the expression patterns of SOX2OT variants and SOX2 in three principal types of brain tumours (gliomas, meningiomas and pituitary adenomas) and in four brain tumour cell lines (U87-MG, 1321N1, A172 and DAOY). Total RNA was extracted from 34 human brain tumour specimens, and the expression profile of target genes was measured using a real-time reverse transcription PCR approach. Our data revealed distinct expression patterns for SOX2OT variants and SOX2 in the brain tumour samples, indicating their potential involvement in brain tumourigenesis. Moreover, our results highlighted the potential usefulness of SOX2OT-S1, SOX2OT-S2, and SOX2 in molecular diagnosis and brain tumour classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Amaral P. P., Christine N., Simon J. W., Marjan E. A., Susan M. S., Andrew C. P. et al. 2009 Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 15, 2013–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annovazzi L., Mellai M., Caldera V., Valente G. and Schiffer D. 2011 SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genom. Proteom. 8, 139–147.

    CAS  Google Scholar 

  • Atlasi Y., Mowla S. J., Ziaee S. A. M., Gokhale P. J. and Andrews W. P. 2008 OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26, 3068–3074.

    Article  CAS  PubMed  Google Scholar 

  • Azad F. M., Taheri Bajgan E., Naeli P., Rudov A., Bagheri Moghadam M., Sadat Akhtar M. et al. 2022 Differential expression pattern of linc-ROR spliced variants in pluripotent and non-pluripotent cell lines. Cell J. 24, 569–576.

    Google Scholar 

  • Banan R. and Christian H. 2017 The new WHO 2016 classification of brain tumors—what neurosurgeons need to know. Acta Neurochir. (Wien) 159, 403–418.

    Article  PubMed  Google Scholar 

  • Bani-Yaghoub M., Roger G. T., Joy X. L., Dongling Z., Bogdan Z., Jagdeep K. S. et al. 2006 Role of Sox2 in the development of the mouse neocortex. Dev. Biol. 295, 52–66.

    Article  CAS  PubMed  Google Scholar 

  • Bernard D., Kannanganattu V. P., Vidisha T., Sabrina C., Tetsuya N., Zhenyu X. et al. 2010 A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond A. M., Michael J. W. V., Evgeny A. S., Mary F. C., Julie C. S., John F. D. et al. 2009 Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat. Neurosci. 12, 1020–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush S. J., Lu C., Jaime M.T.-C. and Araxi O. U. 2017 Alternative splicing and the evolution of phenotypic novelty. Philos. Trans. R. Soc. B: Biol. Sci. 372, 1–7.

    Article  Google Scholar 

  • Bylund M., Elisabeth A., Bennett G. N. and Jonas M. 2003 Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168.

    Article  CAS  PubMed  Google Scholar 

  • Chodroff R. A., Leo G., Tamara M. S., Peter L. O., Kay E. D., Eric D. G. et al. 2010 Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol. 11, 1–16.

    Article  Google Scholar 

  • Di Cristo G., Tommaso P., Laura C. and Evelyne S. 2011 GABAergic circuit development and its implication for CNS disorders. Neural. Plast. 2011, 1–2.

    Article  Google Scholar 

  • Dorton A. 2000 The pituitary gland: embryology, physiology, and pathophysiology. Neonatal. Netw. 19, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Eaves C. J. 2008 Here, there, everywhere? Nature 456, 581–582.

    Article  CAS  PubMed  Google Scholar 

  • Faghihi M. A., Farzaneh M., Ahmad M. K., Douglas E. W., Barbara G. S., Todd E. M. et al. 2008 Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med. 14, 723–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantes J., Nicola K. R., Sally-Ann L., Niolette I. M., Richard J. O. C., Patricia N. H. P. et al. 2003 Mutations in SOX2 cause anophthalmia. Nat. Genet. 33, 462–463.

    Article  Google Scholar 

  • Ferri A. L. M., Maurizio C., Daniela B., Antonello D. C., Annalisa C., Annamaria V. et al. 2004 Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Dev. 131, 3805–3819.

    Article  CAS  Google Scholar 

  • Finocchiaro G., Maria S. C., Stephanie F., Paola P., Valentina D. and Heiko M. 2007 Localizing hotspots of antisense transcription. Nucleic Acids Res. 35, 1488–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gangemi R. M. R., Fabrizio G., Daniela M., Marzia P., Maria C. C., Paolo M. et al. 2009 SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27, 40–48.

    Article  CAS  PubMed  Google Scholar 

  • Gao N., Yueheng L., Jing L. I., Zhengfan G., Zhenzhen Y., Yong L. et al. 2020 Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front. Oncol. 10, 1–13.

    Article  Google Scholar 

  • Gholipour A., Malakootian M. and Oveisee M. 2022 hsa-miR-508-5p as a New Potential Player in Intervertebral Disc Degeneration. Int. J. Mol. Cell Med. 11, 1–13.

    Google Scholar 

  • Graham V., Jane K. H., Pamela E. and Larysa P. 2003 SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765.

    Article  CAS  PubMed  Google Scholar 

  • Guo L., Meixiang S., Qingrui L., Xiaojie F., Xiao Zh. and Baoen S. 2013 The expression and clinical significance of melanoma-associated antigen-A1,-A3 and-A11 in glioma. Oncol. Lett. 6, 55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutschner T. and Sven D. 2012 The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 9, 703–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell L., Mankoff D., Paulovich A., Ramsey S. and Swisher E. 2006 Cancer biomarkers: a systems approach. Nat. Biotechnol. 24, 905–908.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati H. D., Ichiro N., Jorge A. L., Michael M. S., Daniel H. G., Marianne B. F. et al. 2003 Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui A. B., Kwok-Wai L., Xiao-Lu Y., Wai-Sang P. and Ho-Keung N. 2001 Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab. Invest. 81, 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H. and Takashi Y. 2003 Immunohistochemical study of anaplastic meningioma with special reference to the phenotypic change of intermediate filament protein. Ann. Diagn. Pathol. 7, 214–222.

    Article  PubMed  Google Scholar 

  • Kapranov P., Jill C., Sujit D., David A. N., Radharani D., Aarron T. W. et al. 2007 RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488.

    Article  CAS  PubMed  Google Scholar 

  • Kiefer J. C. 2007 Back to basics: Sox genes. Dev. Dyn. 236, 2356–2366.

    Article  CAS  PubMed  Google Scholar 

  • Kim J., Jianlin C., Xiaohua S., Jianlong W. and Stuart H. O. 2008 An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  • Kim S. H., Key-Hwan L., Sumin Y. and Jae-Yeol J. 2021 Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J. Hematol. Oncol. 14, 1–17.

    Article  Google Scholar 

  • Korneev S. A., Elena I. K., Marya A. L., Sergei L. K., Giles C. and Michael O. 2008 Novel noncoding antisense RNA transcribed from human anti-NOS2A locus is differentially regulated during neuronal differentiation of embryonic stem cells. RNA 14, 2030–2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P. Y., Wang P., Gao S. G. and Dong D. Y. 2020 Long noncoding RNA SOX2-OT: regulations, functions, and roles on mental illnesses, cancers, and diabetic complications. Biomed. Res. Int. 2020, 1–12.

    Google Scholar 

  • Louis D. N., Hiroko O., Otmar D. W., Webster K. C., Peter C. B., Anne J. et al. 2007 The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malakootian M., Mowla S. J., Saberi H., Asadi M. H., Atlasi Y. and Malekzadeh Shafaroudi A. 2010 Differential expression of nucleostemin, a stem cell marker, and its variants in different types of brain tumors. Mol. Carcinog. 49, 818–825.

    CAS  PubMed  Google Scholar 

  • Malakootian M., Mirzadeh Azad F., Naeli P., Pakzad M., Fouani Y., Taheri Bajgan E. et al. 2017 Novel spliced variants of OCT4, OCT4C and OCT4C1, with distinct expression patterns and functions in pluripotent and tumor cell lines. Eur. J. Cell Biol. 96, 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Malakootian M., Mirzadeh Azad F., Fouani Y., Taheri Bajgan E., Saberi H. and Mowla S. J. 2018 Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors. J. Neuro-Oncol. 138, 261–270.

    Article  CAS  Google Scholar 

  • Malakootian M., Gholipour A., Malekzadeh Shafaroud A., Arabian M. and Oveisee M. 2022 Potential roles of circular RNAs and environmental and clinical factors in intervertebral disc degeneration. Environ. Health Eng. Manag. 9, 189–200.

    Article  CAS  Google Scholar 

  • McFaline-Figueroa J. R. and Eudocia Q. L. 2018 Brain tumors. Am. J. Med. 131, 874–882.

    Article  PubMed  Google Scholar 

  • Mehler M. F. and John S. M. 2006 Non-coding RNAs in the nervous system. Physiol. J. 575, 333–541.

    Article  CAS  Google Scholar 

  • Mehler M. F. and John S. M. 2007 Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol. Rev. 87, 799–823.

    Article  CAS  PubMed  Google Scholar 

  • Mercer T. R., Marcel E. D., Jean M., Kenneth S. K., Mark F. M. and John S. M. 2008 Noncoding RNAs in long-term memory formation. Neuroscientist 14, 434–445.

    Article  CAS  PubMed  Google Scholar 

  • Meseure D., Sophie V., François L., Kinan D. A., Rana H., Walid C. et al. 2016 Prognostic value of a newly identified MALAT1 alternatively spliced transcript in breast cancer. Br. J. Cancer 114, 1395–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzadeh Azad F., Malakootian M. and Mowla S. J. 2019 lncRNA PSORS1C3 is regulated by glucocorticoids and fine-tunes OCT4 expression in non-pluripotent cells. Sci. Rep. 9, 1–9.

    Article  CAS  Google Scholar 

  • Miyagi S., Tetsuichiro S., Ken-ichi M., Norihisa M., Yukiko G., Atsushi I. et al. 2004 The Sox-2 regulatory regions display their activities in two distinct types of multipotent stem cells. Mol. Cell. Biol. 24, 4207–4220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuseki K., Masashi K., Masaru M., Shigetada N. and Yoshiki S. 1998 Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125, 579–587.

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra G., Andrew W. B., Dong H. K., Kathleen L., Dan H. M., Michael D. P. et al. 1998 Genetic analysis of glioblastoma multiforme provides evidence for subgroups within the grade. Genes Chromosom. Cancer 21, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Qian Y., Lei S. and Zhong L. 2020 Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front. Med. (Lausanne) 902, 1–8.

    Google Scholar 

  • Qureshi I. A. and Mark F. M. 2012 Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi I. A., John S. M. and Mark F. M. 2010 Long non-coding RNAs in nervous system function and disease. Brain Res. 1338, 20–35.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J. M., Fernando P., Tomás D. D., Jesus V. and Michael L. T. 2020 An analysis of tissue-specific alternative splicing at the protein level. PLoS Comput. Biol. 16, 1–24.

    Article  Google Scholar 

  • Rynkeviciene R., Julija S., Egle S., Vaidotas S., Jurgita U., Edita M. K. et al. 2018 Non-coding RNAs in glioma. Cancers 11, 17–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shahryari A., Mahmoud R. R., Youssef F., Nasrin A. O., Nader M. S., Mohammad S. et al. 2014 Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells 32, 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Singh S. K., Ian D. C., Mizuhiko T., Victoria E. B., Cynthia H., Jeremy S. et al. 2003 Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.

    CAS  PubMed  Google Scholar 

  • Statello L., Chun-Jie G., Ling-Ling C. and Maite H. 2021 Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118.

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa M., Yoshiko I., Tatsuya T., Yusuke K. and Hisato K. 2003 Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell 4, 509–519.

    Article  CAS  PubMed  Google Scholar 

  • Uchikawa M., Tatsuya T., Yusuke K. and Hisato K. 2004 Efficient identification of regulatory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech. Dev. 121, 1145–1158.

    Article  CAS  PubMed  Google Scholar 

  • Wegner M. 1999 From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner M. and Claus C. S. 2005 From stem cells to neurons and glia: a Soxist’s view of neural development. Trends Neurosci. 28, 583–588.

    Article  CAS  PubMed  Google Scholar 

  • Wei C. W., Ting L., Shan-Shan Z. and An-Shi W. 2018 The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front. Behav. Neurosci. 12, 1–11.

    Article  Google Scholar 

  • Yao R. W., Yang W. and Ling-Ling C. 2019 Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551.

    Article  CAS  PubMed  Google Scholar 

  • Yin J., Yanan S., Yanna S., Yuan Z., Jiayue D., Xiajuan H. et al. 2020 Knockdown of long non-coding RNA SOX2OT downregulates SOX2 to improve hippocampal neurogenesis and cognitive function in a mouse model of sepsis-associated encephalopathy. J. Neuroinflammation 17, 1–14.

    Article  Google Scholar 

  • Zappone M. V., Rossella G., Raffaella C., Natalia M., Silvia D. B., Elisabetta M. et al. 2000 Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Mrs Nabian and Ms Esmaeili at the Brain and Spinal Injuries Research Center (Imam Khomeini Medical Center, Tehran) for their assistance in providing frozen clinical samples Funding was provided by Tarbiat Modares University. We are also grateful to Mr Saied Rahmani for his assistance in bioinformatics analysis and Ms Alipour for her technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Study conception or design: YF, SJM, and MM; bioinformatics analysis: AGH; data analysis and draft manuscript preparation: YF, MO, ASH, and HS; critical revision of the paper: MO, SJM, and MM; supervision of the research: SJM and MM; final approval of the version: YF, MO, AGH, ASH, HS, SJM, and MM.

Corresponding author

Correspondence to Mahshid Malakootian.

Additional information

Corresponding editor: Murali Dharan Bashyam

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouani, Y., Gholipour, A., Oveisee, M. et al. Distinct gene expression patterns of SOX2 and SOX2OT variants in different types of brain tumours. J Genet 102, 25 (2023). https://doi.org/10.1007/s12041-023-01423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01423-z

Keywords

Navigation